Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions

Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.

[1]  Yong Li,et al.  Nondeterministic ultrafast ground-state cooling of a mechanical resonator , 2011, 1103.4197.

[2]  S. Girvin,et al.  Cooling and squeezing via quadratic optomechanical coupling , 2010, 1004.2510.

[3]  Mang Feng,et al.  Tunable double optomechanically induced transparency in an optomechanical system , 2014, 1405.2410.

[4]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[5]  P. Nation,et al.  A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime , 2013, 1312.7521.

[6]  F. Nori,et al.  Two-photon and three-photon blockades in driven nonlinear systems , 2012, 1212.4365.

[7]  Ying Wu,et al.  Optomechanically induced transparency in the mechanical-mode splitting regime. , 2014, Optics letters.

[8]  Jiahua Li,et al.  Dynamical control of soliton formation and propagation in a Y-type atomic system with dual ladder-type electromagnetically induced transparency , 2010 .

[9]  Ying Wu,et al.  Second-harmonic generation of cylindrical electromagnetic waves propagating in an inhomogeneous and nonlinear medium. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Sukhorukov,et al.  Chaotic oscillations of coupled nanobeam cavities with tailored optomechanical potentials. , 2014, Optics letters.

[11]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[12]  G. S. Agarwal,et al.  Superradiance and collective gain in multimode optomechanics , 2014, 1409.7226.

[13]  T. Kippenberg,et al.  Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit , 2009 .

[14]  Chunnong Zhao,et al.  Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency , 2014, 1402.4901.

[15]  F. Nori,et al.  Squeezed optomechanics with phase-matched amplification and dissipation. , 2014, Physical review letters.

[16]  W. Ding,et al.  Single-photon generation by pulsed laser in optomechanical system via photon blockade effect , 2013 .

[17]  A. Zheng,et al.  Tunable slow light in a quadratically coupled optomechanical system , 2013 .

[18]  Yu-xi Liu,et al.  Mechanical PT symmetry in coupled optomechanical systems , 2014, 1402.7222.

[19]  O. Painter,et al.  Enhanced quantum nonlinearities in a two-mode optomechanical system. , 2012, Physical review letters.

[20]  Lukin,et al.  Dark-state polaritons in electromagnetically induced transparency , 2000, Physical review letters.

[21]  Hao Xiong,et al.  Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. , 2013, Optics letters.

[22]  H. Miao,et al.  Open quantum dynamics of single-photon optomechanical devices , 2011, 1110.3348.

[23]  Qian-qian Bao,et al.  Marking slow light signals with fast optical precursors in the regime of electromagnetically induced transparency , 2014 .

[24]  Yanbei Chen,et al.  Macroscopic quantum mechanics: theory and experimental concepts of optomechanics , 2013, 1302.1924.

[25]  Gao-xiang Li,et al.  Ground-state cooling of a nanomechanical resonator with a triple quantum dot via quantum interference , 2012 .

[26]  P. Rakich,et al.  Optomechanics: photons that pivot and shuttle. , 2014, Nature nanotechnology.

[27]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[28]  Jing Zhang,et al.  Engineering of nonclassical motional states in optomechanical systems , 2012, 1210.0070.

[29]  Franco Nori,et al.  Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system , 2008, 0805.4102.

[30]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[31]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[32]  Michael R. Vanner,et al.  Probing Planck-scale physics with quantum optics , 2011, Nature Physics.

[33]  P. Zoller,et al.  Single-photon nonlinearities in two-mode optomechanics , 2012, 1210.4039.

[34]  Hao Xiong,et al.  Higher-order sidebands in optomechanically induced transparency , 2012 .

[35]  Ying Wu,et al.  Carrier-envelope phase-dependent atomic coherence and quantum beats , 2007 .

[36]  Gao-xiang Li,et al.  Quantum interference effects on ground-state optomechanical cooling , 2013 .

[37]  K. Zhu,et al.  Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems. , 2014, Optics express.

[38]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[39]  C. K. Law,et al.  Spectrum of single-photon emission and scattering in cavity optomechanics , 2012, 1201.1696.

[40]  Ying Wu,et al.  Ultraslow optical solitons in a cold four-state medium. , 2004, Physical review letters.

[41]  S. Girvin,et al.  Cooling in the single-photon strong-coupling regime of cavity optomechanics , 2012, 1202.3263.

[42]  S. Deleglise,et al.  Optomechanically Induced Transparency , 2011 .

[43]  K. Agatsuma,et al.  Precise measurement of laser power using an optomechanical system. , 2013, Optics express.

[44]  André Xuereb,et al.  Strong coupling and long-range collective interactions in optomechanical arrays. , 2012, Physical review letters.

[45]  Ying Wu,et al.  Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime , 2014 .

[46]  Ying Wu,et al.  Solutions of the cylindrical nonlinear Maxwell equations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  W. Pernice,et al.  A mechanical Kerr effect in deformable photonic media , 2009 .

[48]  C. K. Law,et al.  Dark states of a moving mirror in the single-photon strong-coupling regime , 2012, 1211.5445.

[49]  Masahiro Nomura,et al.  GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. , 2012, Optics express.

[50]  Franco Nori,et al.  Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system , 2014, 1402.2764.

[51]  A. Alvermann,et al.  Route to chaos in optomechanics. , 2014, Physical review letters.

[52]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[53]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[54]  B. Hauer,et al.  A general procedure for thermomechanical calibration of nano/micro-mechanical resonators , 2013, 1305.0557.

[55]  Franco Nori,et al.  PT-symmetric phonon laser. , 2014, Physical review letters.

[56]  H. Tang,et al.  Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium , 2013, Scientific reports.

[57]  D. Bouwmeester,et al.  Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.

[58]  Jiahua Li,et al.  Carrier-envelope-phase-dependent effects of high-order harmonic generation in a strongly driven two-level atom , 2009 .

[59]  Franco Nori,et al.  Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity , 2014, 1403.0049.

[60]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[61]  V. Sudhir,et al.  Nonlinear quantum optomechanics via individual intrinsic two-level defects. , 2013, Physical review letters.

[62]  F. Marquardt,et al.  Photon shuttle: Landau-Zener-Stückelberg dynamics in an optomechanical system , 2009, 0909.2164.

[63]  A. Kronwald,et al.  Full photon statistics of a light beam transmitted through an optomechanical system , 2012, 1202.3674.

[64]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[65]  S. Girvin,et al.  Single-photon optomechanics. , 2011, Physical review letters.

[66]  Cheng Jiang,et al.  Controllable four-wave mixing based on mechanical vibration in two-mode optomechanical systems , 2013 .

[67]  I. Wilson-Rae,et al.  Nonlinear nanomechanical resonators for quantum optoelectromechanics , 2012, 1206.0147.

[68]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[69]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[70]  C. Chandre,et al.  Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems , 1998, chao-dyn/9802022.

[71]  Bin Chen,et al.  Slow light in a cavity optomechanical system with a Bose-Einstein condensate , 2011 .

[72]  Nan Zhao,et al.  Hybrid opto-mechanical systems with nitrogen-vacancy centers , 2015, 1501.00636.

[73]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[74]  M. Sillanpaa,et al.  Enhancing Optomechanical Coupling via the Josephson Effect , 2013, 1311.3802.

[75]  G. J. Milburn,et al.  Phonon number quantum jumps in an optomechanical system , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[76]  F. Marino,et al.  Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Wen-Zhao Zhang,et al.  Quantum control gate in cavity optomechanical system , 2015 .

[78]  M. Cerdonio,et al.  Room temperature gravitational wave bar detector with optomechanical readout , 2002 .

[79]  Huaizhi Wu,et al.  The effect of Landau–Zener dynamics on phonon lasing , 2011, 1102.1647.

[80]  G. Agarwal,et al.  Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes , 2010, 1010.0757.

[81]  A. Bahrampour,et al.  Analysis of chaotic behavior in an optical microresonator , 2014 .

[82]  M. Paternostro,et al.  Reconfigurable long-range phonon dynamics in optomechanical arrays. , 2013, Physical review letters.

[83]  J. P. Santos,et al.  Probing the quantum phase transition in the Dicke model through mechanical vibrations , 2010, 1008.0372.

[84]  Tal Carmon,et al.  Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. , 2007, Physical review letters.

[85]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[86]  P. Nation Nonclassical mechanical states in an optomechanical micromaser analog , 2013, 1308.4213.

[87]  J. Bohnet,et al.  A steady-state superradiant laser with less than one intracavity photon , 2012, Nature.

[88]  Jiahua Li,et al.  Transverse acoustic wave in molecular magnets via electromagnetically induced transparency , 2007 .

[89]  Yingying Shi,et al.  Dynamics of social tolerance in the economic interaction model with three groups , 2014 .

[90]  H. Ramp,et al.  Nonlinear optomechanics in the stationary regime , 2014, 1402.3596.

[91]  Huaizhi Wu,et al.  Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system , 2014 .

[92]  E. Wu,et al.  Macroscopic Entanglement of Remote Optomechanical Systems Assisted by Parametric Interactions , 2015 .

[93]  Nicolaas Bloembergen,et al.  From Nanosecond to Femtosecond Science , 1999 .

[94]  V. Podolskiy,et al.  Collective phenomena in photonic, plasmonic and hybrid structures. , 2011, Optics express.

[95]  Ying Wu,et al.  Four-wave mixing in molecular magnets via electromagnetically induced transparency , 2007 .

[96]  B. He,et al.  Fully quantum approach to optomechanical entanglement , 2013, 1308.5932.

[97]  A S Sørensen,et al.  Optomechanical transducers for long-distance quantum communication. , 2010, Physical review letters.

[98]  P. Meystre,et al.  Laser phase noise effects on the dynamics of optomechanical resonators , 2010, 1011.0455.

[99]  Gao-xiang Li,et al.  Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling , 2015 .

[100]  Mani Hossein-Zadeh,et al.  Sub-pg mass sensing and measurement with an optomechanical oscillator. , 2013, Optics express.

[101]  V. Savona,et al.  Input-output theory of the unconventional photon blockade , 2013, 1307.3161.

[102]  S. Girvin,et al.  Signatures of nonlinear cavity optomechanics in the weak coupling regime. , 2013, Physical review letters.

[103]  Hao Xiong,et al.  Formation and manipulation of optomechanical chaos via a bichromatic driving , 2014 .

[104]  Wei C. Jiang,et al.  High-frequency silicon optomechanical oscillator with an ultralow threshold. , 2012, Optics express.

[105]  A. Kronwald,et al.  Optomechanically induced transparency in the nonlinear quantum regime. , 2013, Physical review letters.

[106]  Mohammad Hafezi,et al.  Slowing and stopping light using an optomechanical crystal array , 2010, 1006.3829.

[107]  V. Giovannetti,et al.  Steady-state entanglement activation in optomechanical cavities , 2013, 1306.1142.

[108]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[109]  F. Piazza,et al.  Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity , 2013, 1305.2928.

[110]  Ying Wu,et al.  Classical theory of cylindrical nonlinear optics: Sum- and difference-frequency generation , 2011 .

[111]  C. K. Law,et al.  Correlated two-photon scattering in cavity optomechanics , 2012, 1206.3085.

[112]  Harris,et al.  Observation of electromagnetically induced transparency. , 1991, Physical review letters.

[113]  P. Zoller,et al.  Optomechanical quantum information processing with photons and phonons. , 2012, Physical review letters.

[114]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[115]  Hailin Wang,et al.  Optomechanical Dark Mode , 2012, Science.

[116]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[117]  Tal Carmon,et al.  Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. , 2005, Physical review letters.

[118]  M. Feng,et al.  Precision measurement of electrical charge with optomechanically induced transparency , 2012, 1208.0067.

[119]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[120]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[121]  Ying Wu,et al.  Electromagnetically induced transparency in V-, ¿-, and cascade-type schemes beyond steady-state analysis (7 pages) , 2005 .

[122]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[123]  Gao-xiang Li,et al.  Generation of squeezed states in a movable mirror via dissipative optomechanical coupling , 2013 .

[124]  Oskar Painter,et al.  Proposal for an optomechanical traveling wave phonon–photon translator , 2010, 1009.3529.

[125]  C. P. Sun,et al.  Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities , 2009, 0905.0970.

[126]  K. Vahala,et al.  High-Q double-disk microcavities for cavity optomechanics. , 2009, Optics express.

[127]  Xiaoxue Yang,et al.  Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation , 2008 .

[128]  A. Clerk,et al.  Quantum signatures of the optomechanical instability. , 2011, Physical review letters.

[129]  Quantum many-body dynamics in optomechanical arrays. , 2012, Physical review letters.

[130]  M. H. Naderi,et al.  Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors , 2013, 1306.5543.

[131]  P. Meystre,et al.  Hamiltonian chaos in a coupled BEC-optomechanical-cavity system , 2009, 0909.5465.

[132]  Jonas Larson,et al.  Photonic Josephson effect, phase transitions, and chaos in optomechanical systems , 2010, 1009.2945.

[133]  Max Ludwig,et al.  The optomechanical instability in the quantum regime , 2008, 0803.3714.

[134]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[135]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[136]  Yu-xi Liu,et al.  Photon-induced tunneling in optomechanical systems , 2012, 1212.4221.

[137]  Yang Xiao-Xue,et al.  Classical theory of cylindrical nonlinear optics: Second-harmonic generation , 2011 .

[138]  Cheng Jiang,et al.  Electromagnetically induced transparency and slow light in two-mode optomechanics. , 2013, Optics express.

[139]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[140]  G. J. Milburn,et al.  Phonon number measurements using single photon opto-mechanics , 2012, 1205.3240.

[141]  M. Paternostro,et al.  Enhancing non-classicality in mechanical systems , 2012, 1211.5395.

[142]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[143]  Ying Wu,et al.  Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems , 2012, Scientific Reports.

[144]  H. Kimble,et al.  Cavity optomechanics with stoichiometric SiN films. , 2009, Physical review letters.

[145]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[146]  Ying Wu,et al.  Ultraslow bright and dark optical solitons in a cold three-state medium. , 2004, Optics letters.

[147]  Franco Nori,et al.  Photon blockade in quadratically coupled optomechanical systems , 2013, 1308.6360.

[148]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[149]  Franco Nori,et al.  Optomechanical-like coupling between superconducting resonators , 2014, 1403.4341.

[150]  Bin Chen,et al.  Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate , 2011 .

[151]  Yanbei Chen,et al.  Scaling law in signal recycled laser-interferometer gravitational-wave detectors , 2003 .

[152]  A. Clerk,et al.  Nonlinear interaction effects in a strongly driven optomechanical cavity. , 2013, Physical review letters.