Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation

In this paper, we present a fast and efficient numerical method to solve a two-dimensional fractional evolution equation on a finite domain. This numerical method combines the alternating direction implicit (ADI) approach with the second-order difference quotient in space, the backward Euler in time and order one convolution quadrature approximating the integral term. By using the discrete energy method, we prove that the ADI scheme is unconditionally stable and the numerical solution converges to the exact one with order O(k+h"x^2+h"y^2), where k is the temporal grid size and h"x,h"y are spatial grid sizes in the x and y directions, respectively. Two numerical examples with known exact solution are also presented, and the behavior of the error is analyzed to verify the order of convergence of the ADI-Euler method.

[1]  Vidar Thomée,et al.  Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[2]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[3]  J. M. Sanz-Serna,et al.  A numerical method for a partial integro-differential equation , 1988 .

[4]  V. Thomée,et al.  Time discretization of an evolution equation via Laplace transforms , 2004 .

[5]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[6]  J. C. López-Marcos A difference scheme for a nonlinear partial integrodifferential equation , 1990 .

[7]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[8]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[9]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[10]  M. Gurtin,et al.  A general theory of heat conduction with finite wave speeds , 1968 .

[11]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[12]  Weihua Deng,et al.  Finite Difference/Element Method for a Two-Dimensional Modified Fractional Diffusion Equation , 2012 .

[13]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[14]  R. K. Miller,et al.  An integrodifferential equation for rigid heat conductors with memory , 1978 .

[15]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[16]  Fawang Liu,et al.  Implicit difference approximation for the two-dimensional space-time fractional diffusion equation , 2007 .

[17]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[18]  Michael Renardy,et al.  Mathematical Analysis of Viscoelastic Flows , 1987 .

[19]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[20]  Graeme Fairweather,et al.  Alternating Direction Implicit Orthogonal Spline Collocation Methods for an Evolution Equation with a Positive-Type Memory Term , 2007, SIAM J. Numer. Anal..

[21]  A. Pipkin,et al.  Lectures on Viscoelasticity Theory , 1972 .

[22]  Xu Da,et al.  The long-time global behavior of time discretization for fractional order Volterra equations , 1998 .

[23]  Xu Da,et al.  On the discretization in time for a parabolic integrodifferential equation with a weakly singular kernel II: nonsmooth initial data , 1993 .

[24]  C. Lubich Discretized fractional calculus , 1986 .

[25]  Xu Da,et al.  Finite central difference/finite element approximations for parabolic integro-differential equations , 2010, Computing.

[26]  Fawang Liu,et al.  A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation , 2009 .

[27]  Huazhong Tang,et al.  High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations , 2012 .

[28]  Fawang Liu,et al.  ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation , 2008 .

[29]  Fawang Liu,et al.  Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method , 2007, J. Comput. Phys..

[30]  L J.C.,et al.  A DIFFERENCE SCHEME FOR A NONLINEAR PARTIAL INTEGRODIFFERENTIAL EQUATION , 1990 .

[31]  Da Xu,et al.  A Compact Difference Scheme for an Evolution Equation with a Weakly Singular Kernel , 2012 .

[32]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[33]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[34]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[35]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[36]  M. D. Salas,et al.  Multiple steady states for characteristic initial value problems , 1986 .

[37]  Tao Tang,et al.  A finite difference scheme for partial integro-differential equations with a weakly singular kernel , 1993 .

[38]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .