Targets for R&D on Nb3Sn Conductor for High Energy Physics

High Energy Physics has been consistently pushing the performance of technical superconductors, for the benefit of high field magnet technology. So far the workhorse for particle accelerators has been Nb-Ti, but the practical performance limit has been attained with the LHC. Calls for higher beam luminosity (e.g., HL-LHC), and higher beam energy (e.g., FCC), demand a transition from Nb-Ti to Nb3Sn, presently the only practical candidate material offering the required high field performance. This paper provides a summary of desirable properties and performance targets for Nb3Sn to satisfy the challenging magnet specifications for upgrades of existing and future HEP accelerators.

[1]  B.Auchmann,et al.  MAGNETIC ANALYSIS OF A SINGLE-APERTURE 11 T NB 3 SN DEMONSTRATOR DIPOLE FOR LHC UPGRADES , 2016 .

[2]  Luca Bottura,et al.  Superconducting Magnets for Particle Accelerators , 2016, IEEE Transactions on Nuclear Science.

[3]  G. Sabbi,et al.  Test Results of the LARP HQ02b Magnet at 1.9 K , 2015, IEEE Transactions on Applied Superconductivity.

[4]  M. Anerella,et al.  Magnet Design of the 150 mm Aperture Low-$\beta$ Quadrupoles for the High Luminosity LHC , 2014, IEEE Transactions on Applied Superconductivity.

[5]  L. Rossi,et al.  A First Baseline for the Magnets in the High Luminosity LHC Insertion Regions , 2014, IEEE Transactions on Applied Superconductivity.

[6]  N. Mitchell,et al.  Challenges and status of ITER conductor production , 2014 .

[7]  M. Sumption,et al.  Refinement of Nb3Sn grain size by the generation of ZrO2 precipitates in Nb3Sn wires , 2014, 1402.3001.

[8]  D. R. Dietderich,et al.  A review of conductor performance for the LARP high-gradient quadrupole magnets , 2013 .

[9]  S. Russenschuck,et al.  Cold Test Results of the LARP HQ $\hbox{Nb}_{3} \hbox{Sn}$ Quadrupole Magnet at 1.9 K , 2013, IEEE Transactions on Applied Superconductivity.

[10]  G. Sabbi $\hbox{Nb}_{3}\hbox{Sn}$ IR Quadrupoles for the High Luminosity LHC , 2013, IEEE Transactions on Applied Superconductivity.

[11]  Tim Radford,et al.  Accelerating science and innovation : societal benefits of European research in Particle Physics , 2013 .

[12]  L. Bottura,et al.  Magnetization Measurements of High- Strands , 2013 .

[13]  S. Russenschuck,et al.  Cold Test Results of the LARP HQ Nb 3 Sn Quadrupole Magnet at 1 . 9 K , 2013 .

[14]  L. Rossi,et al.  Advanced Accelerator Magnets for Upgrading the LHC , 2012, IEEE Transactions on Applied Superconductivity.

[15]  L. Rossi,et al.  Impact of the Residual Resistivity Ratio on the Stability of ${\rm Nb}_{3}{\rm Sn}$ Magnets , 2012, IEEE Transactions on Applied Superconductivity.

[16]  G. Apollinari,et al.  Design of 11 T Twin-Aperture ${\rm Nb}_{3}{\rm Sn}$ Dipole Demonstrator Magnet for LHC Upgrades , 2012, IEEE Transactions on Applied Superconductivity.

[17]  G. de Rijk,et al.  The EuCARD High Field Magnet Project , 2012, IEEE Transactions on Applied Superconductivity.

[18]  L. Rossi,et al.  Impact of the Residual Resistivity Ratio on the Stability of Nb 3 Sn Magnets , 2012 .

[19]  Luca Bottura,et al.  Superconducting Materials and Conductors:. Fabrication and Limiting Parameters , 2012 .

[20]  L. Rossi,et al.  First Thoughts on a Higher-Energy LHC , 2010 .

[21]  Youzhu Zhang,et al.  Internal Tin ${\hbox {Nb}}_{3}{\hbox {Sn}}$ Conductors Engineered for Fusion and Particle Accelerator Applications , 2009, IEEE Transactions on Applied Superconductivity.

[22]  T. Boutboul,et al.  Heat Treatment Optimization Studies on PIT ${\rm Nb}_{3}{\rm Sn}$ Strand for the NED Project , 2009, IEEE Transactions on Applied Superconductivity.

[23]  D. R. Dietderich,et al.  Nb3Sn research and development in the USA – Wires and cables , 2008 .

[24]  K. Tsuchiya,et al.  Status and perspective of the Nb3Al development , 2008 .

[25]  C. Senatore,et al.  Microstructure, composition and critical current density of superconducting Nb3Sn wires , 2008 .

[26]  David C. Larbalestier,et al.  Microstructural factors important for the development of high critical current density Nb3Sn strand , 2008 .

[27]  L. Rossi,et al.  Self-Field Effects in Magneto-Thermal Instabilities for Nb-Sn Strands , 2008, IEEE Transactions on Applied Superconductivity.

[28]  H. Kate,et al.  State of the art powder-in-tube niobium–tin superconductors , 2008 .

[29]  Lyndon Evans,et al.  LHC Machine , 2008 .

[30]  L. Rossi The Large Hadron Collider and the Role of Superconductivity in One of the Largest Scientific Enterprises , 2007, IEEE Transactions on Applied Superconductivity.

[31]  Youzhu Zhang,et al.  Advances in Nb3Sn Strand for Fusion and Particle Accelerator Applications , 2006 .

[32]  Albertus Godeke,et al.  Performance boundaries in Nb3Sn superconductors , 2005 .

[33]  J.A. Parrell,et al.  Advances in Nb/sub 3/Sn strand for fusion and particle accelerator applications , 2005, IEEE Transactions on Applied Superconductivity.

[34]  L. Cooley,et al.  Magnetization studies of high J/sub c/ Nb/sub 3/Sn strands , 2005, IEEE Transactions on Applied Superconductivity.

[35]  Lance Cooley,et al.  Costs of high-field superconducting strands for particle accelerator magnets , 2005 .

[36]  L. Cooley,et al.  Magnetization studies of high J c Nb 3 Sn strands , 2005 .

[37]  L. Cooley,et al.  Magnetization studies of high Jc Nb3Sn strands , 2005 .

[38]  L. Rossi,et al.  High field accelerator magnet R&D in Europe , 2004, IEEE Transactions on Applied Superconductivity.

[39]  C. Goodzeit,et al.  The RHIC magnet system , 2003 .

[40]  D. Larbalestier,et al.  Changes in flux pinning curve shape for flux-line separations comparable to grain size in Nb3Sn wires , 2002 .

[41]  R. M. Scanlan,et al.  Conductor development for High Energy Physics -- Plans and Status of the U.S. Program , 2001 .

[42]  A. V. Zlobin,et al.  Correction of the persistent current effect in Nb/sub 3/Sn dipole magnets , 2001 .

[43]  D. Leroy,et al.  Design Features and Performance of a 10 T Twin Aperture Model Dipole for LHC , 1998 .

[44]  R. Meinke Superconducting magnet system for HERA , 1991 .