A 3D Voxel Neighborhood Classification Approach within a Multiparametric MRI Classifier for Prostate Cancer Detection
暂无分享,去创建一个
Alfredo Benso | Gianfranco Politano | Alessandro Savino | Stefano Di Carlo | Francesco Rossi | Daniele Regge | Valentina Giannini | Anna Vignati | Simone Mazzetti | A. Benso | S. Carlo | G. Politano | A. Savino | V. Giannini | S. Mazzetti | D. Regge | A. Vignati | Francesco Rossi
[1] Cher Heng Tan,et al. Diffusion weighted imaging in prostate cancer , 2011, European Radiology.
[2] Oleg S. Pianykh,et al. Digital Imaging and Communications in Medicine (DICOM) , 2017, Radiopaedia.org.
[3] Baris Turkbey,et al. Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. , 2012, Medical physics.
[4] Pablo Martínez-Camblor,et al. Nonparametric Cutoff Point Estimation for Diagnostic Decisions with Weighted Errors Estimación no paramétrica del punto de corte asociado a una decisión diagnóstica con errores ponderados , 2011 .
[5] Katsuyoshi Ito,et al. Diffusion‐weighted MRI and its role in prostate cancer , 2014, NMR in biomedicine.
[6] David G. Stork,et al. Pattern Classification , 1973 .
[7] Marcelino Bernardo,et al. MRI of localized prostate cancer: coming of age in the PSA era. , 2012, Diagnostic and interventional radiology.
[8] Oleg S. Pianykh. What Is DICOM , 2012 .
[9] Huiling Lu,et al. Multi-features prostate tumor aided diagnoses based on ensemble-svm , 2013, 2013 IEEE International Conference on Granular Computing (GrC).
[10] J. Hanley,et al. The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.
[11] N M deSouza,et al. Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. , 2008, Clinical radiology.
[12] M. Giger,et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score--a computer-aided diagnosis development study. , 2013, Radiology.
[13] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[14] Sakir Ongun,et al. Son los criterios de vigilancia activa suficientes para predecir el cáncer de próstata de estadio avanzado , 2014 .
[15] B. Reiser,et al. Estimation of the Youden Index and its Associated Cutoff Point , 2005, Biometrical journal. Biometrische Zeitschrift.
[16] Masoom A. Haider,et al. Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields , 2010, IEEE Transactions on Image Processing.
[17] Alfredo Benso,et al. A Prostate Cancer Computer Aided Diagnosis Software including Malignancy Tumor Probabilistic Classification , 2014, BIOIMAGING.
[18] Sakir Ongun,et al. Are active surveillance criteria sufficient for predicting advanced stage prostate cancer patients , 2014 .
[19] Stephan E Maier,et al. Multiparametric MRI of prostate cancer: An update on state‐of‐the‐art techniques and their performance in detecting and localizing prostate cancer , 2013, Journal of magnetic resonance imaging : JMRI.