A general framework for surface modeling using geometric partial differential equations

In this paper, a general framework for surface modeling using geometric partial differential equations (PDEs) is presented. Starting with a general integral functional, we derive an Euler-Lagrange equation and then a geometric evolution equation (also known as geometric flow). This evolution equation is universal, containing several well-known geometric partial differential equations as its special cases, and is discretized under a uniform framework over surface meshes. The discretization of the equation involves approximations of curvatures and several geometric differential operators which are consistently discretized based on a quadratic fitting scheme. The proposed algorithm can be used to construct surfaces for geometric design as well as simulate the behaviors of various geometric PDEs. Comparative experiments show that the proposed approach can handle a large number of geometric PDEs and the numerical algorithm is efficient.

[1]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .

[2]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[3]  Ou-Yang Zhong-can,et al.  Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .

[4]  Morton E. Gurtin,et al.  Interface Evolution in Three Dimensions¶with Curvature-Dependent Energy¶and Surface Diffusion:¶Interface-Controlled Evolution, Phase Transitions, Epitaxial Growth of Elastic Films , 2002 .

[5]  Hong Qin,et al.  Dynamic PDE-based surface design using geometric and physical constraints , 2005, Graph. Model..

[6]  L. Kobbelt,et al.  Generating Fair Meshes with $G^1$ Boundary Conditions , 2000 .

[7]  Guoliang Xu,et al.  Surface modelling using fourth order geometric flows , 2005, International Conference on Computer Graphics, Imaging and Visualization (CGIV'05).

[8]  Guoliang Xu,et al.  Weighted Minimal Surfaces and Discrete Weighted Minimal Surfaces ? , 2005 .

[9]  Ulrich Clarenz,et al.  Enclosure theorems for extremals of elliptic parametric functionals , 2002 .

[10]  H. Seidel,et al.  Analysis and design of discrete normals and curvatures , 2005 .

[11]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[12]  Kaising Tso,et al.  Deforming a hypersurface by its Gauss-Kronecker curvature , 1985 .

[13]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[14]  Gerhard Dziuk,et al.  A fully discrete numerical scheme for weighted mean curvature flow , 2002, Numerische Mathematik.

[15]  Malcolm I. G. Bloor,et al.  Using partial differential equations to generate free-form surfaces , 1990, Comput. Aided Des..

[16]  Yutaka Ohtake,et al.  Polyhedral surface smoothing with simultaneous mesh regularization , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[17]  Hans-Peter Seidel,et al.  Advances in Computer Graphics, 24th Computer Graphics International Conference, CGI 2006, Hangzhou, China, June 26-28, 2006, Proceedings , 2006, CGI.

[18]  Shin Yoshizawa,et al.  Fair triangle mesh generation with discrete elastica , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[19]  Guoliang Xu,et al.  Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces , 2006, Comput. Aided Geom. Des..

[20]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[21]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[22]  G. Dziuk,et al.  On Generalized Mean Curvature Flow in Surface Processing , 2003 .

[23]  Hassan Ugail,et al.  Techniques for interactive design using the PDE method , 1999, TOGS.

[24]  M. I. G. Bloor,et al.  Generating n-Sided Patches with Partial Differential Equations , 1989 .

[25]  Johannes C. C. Nitsche,et al.  Lectures on minimal surfaces: vol. 1 , 1989 .

[26]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[27]  Stefan Hildebrandt,et al.  Minimal Surfaces II: Boundary Regularity , 1992 .

[28]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[29]  Qing Pan,et al.  Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..

[30]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[31]  Malcolm I. G. Bloor,et al.  Functionality in blend design , 1991, Comput. Aided Des..

[32]  Dereck S. Meek,et al.  On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..

[33]  Leif Kobbelt,et al.  Generating fair meshes with G/sup 1/ boundary conditions , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[34]  Marcus A. Magnor,et al.  Weighted Minimal Hypersurfaces and Their Applications in Computer Vision , 2004, ECCV.

[35]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  I. Holopainen Riemannian Geometry , 1927, Nature.

[37]  I. I. Bakelʹman,et al.  Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .

[38]  Hong Qin,et al.  Direct Manipulation and Interactive Sculpting of PDE Surfaces , 2000, Comput. Graph. Forum.

[39]  Michael J. Wilson,et al.  Generating blend surfaces using partial differential equations , 1989 .

[40]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[41]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[42]  Ben Andrews,et al.  Contraction of convex hypersurfaces in Euclidean space , 1994 .

[43]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[44]  C. Bajaj,et al.  Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..

[45]  Leif Kobbelt,et al.  Geometric fairing of irregular meshes for free-form surface design , 2001, Comput. Aided Geom. Des..

[46]  Guoliang Xu,et al.  Consistent Approximations of Some Geometric Differential Operators , 2006 .

[47]  Guoliang Xu,et al.  G1 surface modelling using fourth order geometric flows , 2006, Comput. Aided Des..

[48]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.