Research development on sodium-ion batteries.

[1]  S. Andersson,et al.  The crystal structure of Na2Ti3O7 , 1961 .

[2]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[3]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[4]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[5]  K. Kubota,et al.  Structure and electrode reactions of layered rocksalt LiFeO 2 nanoparticles for lithium battery cath , 2011 .

[6]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[7]  P. Dordor,et al.  Transport properties of NaxCoO2−y , 1984 .

[8]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[9]  Chunsheng Wang,et al.  Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes , 2014 .

[10]  C. Delmas,et al.  O'3-Na(x)VO2 system: a superstructure for Na(1/2)VO2. , 2012, Inorganic chemistry.

[11]  R. Hagiwara,et al.  A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-C 1 C 3 pyrFSA ionic liquid at 363 K , 2014 .

[12]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[13]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[14]  C. Delmas,et al.  The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials , 1988 .

[15]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[16]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[17]  Byung Gon Kim,et al.  Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery , 2013, Proceedings of the National Academy of Sciences.

[18]  Shigeto Okada,et al.  Cathode properties of Na2C6O6 for sodium-ion batteries , 2013 .

[19]  Limin Zhu,et al.  An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries , 2012 .

[20]  Jean-Marie Tarascon,et al.  Sodium intercalation into the layer oxides NaxMo2O4 , 1986 .

[21]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[22]  Glenn G. Amatucci,et al.  Carbon Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries , 2003 .

[23]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[24]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[25]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[26]  Kazuma Gotoh,et al.  NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery , 2013 .

[27]  Hao Gong,et al.  Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. , 2013, Chemical communications.

[28]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[29]  C. Delmas,et al.  Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2 , 2010 .

[30]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[31]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[32]  Haoshen Zhou,et al.  Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+) , 2013 .

[33]  J. Dahn,et al.  Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2 , 2001 .

[34]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[35]  Vincent A. Hackley,et al.  Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries , 2005 .

[36]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[37]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[38]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[39]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[40]  Koji Sekai,et al.  Advanced carbon anode materials for lithium ion cells , 1999 .

[41]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[42]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[43]  J. Tarascon,et al.  Electrochemical, structural, and physical properties of the sodium Chevrel phases NaxMo6X8−yIy (X = S, Se and y = 0 to 2) , 1987 .

[44]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[45]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[46]  Peter J. F. Harris,et al.  Fullerene-related structure of commercial glassy carbons , 2004 .

[47]  J. Tarascon,et al.  Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries , 2013 .

[48]  Young Joo Lee,et al.  Influence of substitution on the structure and electrochemistry of layered Manganese Oxides , 2003 .

[49]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[50]  Chang Ming Li,et al.  TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. , 2010, Chemical communications.

[51]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[52]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[53]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[54]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[55]  H. Sakaebe,et al.  Study of the Capacity Fading Mechanism for Fe-Substituted LiCoO2 Positive Electrode , 2004 .

[56]  A. Yamada,et al.  Layered Na2RuO3 as a cathode material for Na-ion batteries , 2013 .

[57]  J. Badyal,et al.  Surface modification of poly(vinylidene difluoride)(PVDF) by LiOH , 1991 .

[58]  L. Ellis,et al.  In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells , 2014 .

[59]  S. Komaba,et al.  Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries , 2011 .

[60]  B. Hyde,et al.  Non-bonded interactions and the crystal chemistry of tetrahedral structures related to the wurtzite type (B4) , 1978 .

[61]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[62]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[63]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[64]  L. Nazar,et al.  Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials , 2011 .

[65]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[66]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[67]  Tomoyuki Hamada,et al.  Formation and diffusion of vacancy-polaron complex in olivine-type LiMnPO 4 and LiFePO 4 , 2011 .

[68]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[69]  Christopher S. Johnson,et al.  Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles , 2013 .

[70]  Kazuhiko Matsumoto,et al.  Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA , 2013 .

[71]  H. Iba,et al.  Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries , 2013 .

[72]  P. J. Sebastian,et al.  The preparation of NaV1- xCrxPO4F cathode materials for sodium-ion battery , 2006 .

[73]  C. Masquelier,et al.  α-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases. , 2011, Journal of the American Chemical Society.

[74]  T. Abe,et al.  Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions , 2001 .

[75]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[76]  M. Inagaki,et al.  A preparation and polymorphic relations of sodium iron oxide (NaFeO2) , 1980 .

[77]  Candela Vidal-Abarca,et al.  Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution , 2013 .

[78]  H. Ahn,et al.  Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[79]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[80]  E. M. Holt,et al.  Crystal structures of two allotropic forms of Na2CoP2O7 , 1991 .

[81]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[82]  T. Yamabe,et al.  Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage , 1994 .

[83]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .

[84]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[85]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[86]  M. Armand,et al.  An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2 , 2013 .

[87]  J. Goodenough,et al.  Structural characterization of delithiated LiVO2 , 1984 .

[88]  Jay Whitacre,et al.  Microwave Synthesized NaTi2(PO4)3 as an Aqueous Sodium-Ion Negative Electrode , 2013 .

[89]  D. Macfarlane,et al.  Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications , 2013 .

[90]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[91]  C. Parada,et al.  Crystal growth, crystal structure and magneticproperties of disodium cobalt fluorophosphate , 2001 .

[92]  D. Aurbach,et al.  Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions , 2001 .

[93]  T. A. Hewston,et al.  A Survey of first-row ternary oxides LiMO2 (M = Sc-Cu) , 1987 .

[94]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[95]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[96]  Akinori Kita,et al.  Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes , 2011 .

[97]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[98]  O. Borodin,et al.  Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes , 2013 .

[99]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[100]  Wenwen Deng,et al.  Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries , 2013 .

[101]  R. Cava,et al.  Low temperature phase transitions and crystal structure of Na0.5CoO2 , 2004, cond-mat/0402255.

[102]  Massimo Simonetta,et al.  Bond Orbitals and Bond Energy in Elementary Phosphorus , 1952 .

[103]  S. Komaba,et al.  A New Polymorph of Layered LiCoO2 , 2009 .

[104]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[105]  C. Delmas,et al.  Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3) , 2012 .

[106]  Gerbrand Ceder,et al.  Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries , 2014 .

[107]  Caridad Ruiz-Valero,et al.  Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni) , 2001 .

[108]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[109]  Xiqian Yu,et al.  A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. , 2013, Nano letters.

[110]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[111]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[112]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[113]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[114]  S. Pejovnik,et al.  Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study , 2003 .

[115]  H. Oji,et al.  Graphite‐Silicon‐Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li‐Ion Batteries , 2011 .

[116]  Kazuyuki Suzuki,et al.  Synthesis of Nanocrystalline Fe 2 O 3 for Lithium Secondary Battery Cathode , 2002 .

[117]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[118]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[119]  M. Takano,et al.  Preparation and characterization of stoichiometric CaFeO3 , 1978 .

[120]  Hongmin Zhu,et al.  Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. , 2013, Nanoscale.

[121]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .

[122]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[123]  B. Lake,et al.  Patterning of sodium ions and the control of electrons in sodium cobaltate , 2005, Nature.

[124]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[125]  Tomoyuki Matsuda,et al.  A sodium manganese ferrocyanide thin film for Na-ion batteries. , 2013, Chemical communications.

[126]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[127]  M. Armand,et al.  Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. , 2014, Angewandte Chemie.

[128]  Qian Sun,et al.  Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries. , 2013, Chemical communications.

[129]  Yoyo Hinuma,et al.  Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations , 2008 .

[130]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[131]  M. Islam,et al.  Anti-Site Defects and Ion Migration in the LiFe0.5Mn0.5PO4 Mixed-Metal Cathode Material† , 2010 .

[132]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[133]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[134]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[135]  Jean Etourneau,et al.  A review of cation-ordered rock salt superstructureoxides , 2000 .

[136]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[137]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[138]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[139]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[140]  A. D. Wadsley The crystal structure of psilomelane, (Ba, H2O)2Mn5O10 , 1953 .

[141]  Gerbrand Ceder,et al.  Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. , 2012, Journal of the American Chemical Society.

[142]  Hongmin Zhu,et al.  Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries , 2013 .

[143]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[144]  H. Fujimoto,et al.  Charge‐Discharge Characteristics of the Mesocarbon Miocrobeads Heat‐Treated at Different Temperatures , 1995 .

[145]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[146]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[147]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[148]  D. D. MacNeil,et al.  The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures , 2002 .

[149]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[150]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[151]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[152]  Y. L. Page,et al.  The crystal structure of the new mineral maricite, NaFePO 4 , 1977 .

[153]  M. Endo,et al.  A Mechanism of Lithium Storage in Disordered Carbons , 1994, Science.

[154]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[155]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[156]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[157]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[158]  Jean-Marie Tarascon,et al.  Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5 , 2006 .

[159]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[160]  Takayuki Komatsu,et al.  Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery , 2012 .

[161]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[162]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[163]  F. Favier,et al.  Activated-phosphorus as new electrode material for Li-ion batteries , 2011 .

[164]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[165]  Jiangfeng Qian,et al.  A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries , 2013 .

[166]  Maxim Avdeev,et al.  Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. , 2013, Inorganic chemistry.

[167]  Hajime Arai,et al.  Cathode performance and voltage estimation of metal trihalides , 1997 .

[168]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[169]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[170]  T. Gustafsson,et al.  Neutron-scattering studies on carbon anode materials used in lithium-ion batteries , 2002 .

[171]  V. Ramar,et al.  A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. , 2013, Physical chemistry chemical physics : PCCP.

[172]  Jin-Woo Park,et al.  Electrochemical Properties and Discharge Mechanism of Na/TiS2 Cells with Liquid Electrolyte at Room Temperature , 2013 .

[173]  R. Cava,et al.  Large enhancement of the thermopower in NaxCoO2 at high Na doping , 2006, Nature materials.

[174]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[175]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[176]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[177]  J. Shaw,et al.  The Behavior of Na ‐ TiS2 and Na ‐ TiS3 as Solid Solution Electrodes , 1981 .

[178]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[179]  H. C. Foley,et al.  A simple model describes the PDF of a non-graphitizing carbon , 2004 .

[180]  Shinichi Komaba,et al.  Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes , 2008 .

[181]  O. Yakubovich,et al.  The mixed anionic framework in the structure of Na2{MnF[PO4]} , 1997 .

[182]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[183]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[184]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[185]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[186]  S. Komaba,et al.  Electrochemical behavior and structural change of spinel-type Li[LixMn2−x]O4 (x=0 and 0.2) in sodium cells , 2012 .

[187]  M. Egashira,et al.  Influence of Ionic Liquid Species in Non-Aqueous Electrolyte on Sodium Insertion into Hard Carbon , 2012 .

[188]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[189]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[190]  Yukihiro Okuno,et al.  Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery. , 2013, Journal of the American Chemical Society.

[191]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[192]  T. Jacobsen,et al.  A rechargeable all-solid-state sodium cell with polymer electrolyte , 1985 .

[193]  J. Dahn,et al.  Structure of 1T-Li2NiO2 from powder neutron diffraction , 1991 .

[194]  Yuki Yamada,et al.  Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[195]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[196]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[197]  P. Nigrey,et al.  Lightweight Rechargeable Storage Batteries Using Polyacetylene, ( CH ) x as the Cathode‐Active Material , 1981 .

[198]  J. Dahn,et al.  The “falling cards model” for the structure of microporous carbons , 1997 .

[199]  Shinichi Komaba,et al.  Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries , 2014, Science and technology of advanced materials.

[200]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[201]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[202]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[203]  Pierre Kubiak,et al.  High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x , 2012 .

[204]  J. Yamaki,et al.  Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries , 2013 .

[205]  Y. Takeda,et al.  Preparation of LiFeO2 with Alpha‐ NaFeO2‐Type Structure Using a Mixed‐Alkaline Hydrothermal Method , 1997 .

[206]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[207]  Z. Ogumi,et al.  7Li NMR studies on a lithiated non-graphitizable carbon fibre at low temperatures , 1997 .

[208]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[209]  T. Brousse,et al.  Synthesis, Characterization and Electrochemical Studies of Active Materials for Sodium Ion Batteries , 2011 .

[210]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[211]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[212]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[213]  Gerbrand Ceder,et al.  Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries , 2013 .

[214]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[215]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[216]  M. Tabuchi,et al.  Stabilization of tetra-and pentavalent Fe ions in Fe-substituted Li2MnO3 with layered rock-salt structure , 2008 .

[217]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[218]  H. Fang,et al.  The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity , 2008 .

[219]  P. Balaya,et al.  α-MoO3: A high performance anode material for sodium-ion batteries , 2013 .

[220]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[221]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[222]  Shinichi Komaba,et al.  A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries , 2012 .

[223]  C. Delmas,et al.  High-temperature phase transition in the three-layered sodium cobaltiteP′3-NaxCoO2(x∼0.62) , 2008 .

[224]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[225]  Nikolay Dimov,et al.  Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries , 2013 .

[226]  Jianping He,et al.  A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries , 2010 .

[227]  Hanxi Yang,et al.  Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries , 2013 .

[228]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[229]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[230]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[231]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[232]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[233]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[234]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[235]  Lin Gu,et al.  Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium‐Ion Batteries , 2014 .

[236]  Yoshimitsu Tajima,et al.  Rechargeable lithium battery based on pyrolytic carbon as a negative electrode , 1989 .

[237]  J. Dahn,et al.  Intercalation of Water in P2, T2 and O2 Structure Az[CoxNi1/3-xMn2/3]O2 , 2001 .

[238]  M. Doeff,et al.  New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems , 2013 .

[239]  Ying Wang,et al.  Preparation of NaV1−xAlxPO4F cathode materials for application of sodium-ion battery , 2008 .

[240]  R. J. Bones,et al.  Development of a Ni , NiCl2 Positive Electrode for a Liquid Sodium (ZEBRA) Battery Cell , 1989 .

[241]  H. Alloul,et al.  Nuclear quadrupole resonance and x-ray investigation of the structure of Na 2 / 3 CoO 2 , 2009 .

[242]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[243]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[244]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[245]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[246]  Jun-ichi Yamaki,et al.  Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries , 2011 .

[247]  J. Dahn,et al.  Can All the Lithium be Removed from T 2 ­ Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 ? , 2001 .

[248]  T. Jacobsen,et al.  Sodium insertion in vanadium oxides , 1988 .

[249]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[250]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[251]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[252]  C. Delmas,et al.  Optimization of the Composition of the Li1 − z Ni1 + z O 2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies , 1996 .

[253]  Hiroshi Senoh,et al.  Conductivity, viscosity and density of MClO4 (M = Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations , 2013 .

[254]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .

[255]  M. Winter,et al.  P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries , 2013 .

[256]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[257]  J. Yamaki,et al.  Electrochemical insertion of lithium and sodium into (MoO2)2P2O7 , 2003 .

[258]  Steve W. Martin,et al.  Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying , 2013 .

[259]  Daniel J. Haynes,et al.  Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4 , 2012 .

[260]  S. A. Wilson,et al.  Lamellar Compound of Sodium with Graphite , 1958, Nature.

[261]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[262]  K. Kawamura,et al.  Structure of Glassy Carbon , 1971, Nature.

[263]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[264]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[265]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[266]  Sai-Cheong Chung,et al.  A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .

[267]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[268]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[269]  Qian Sun,et al.  High capacity Sb2O4 thin film electrodes for rechargeable sodium battery , 2011 .

[270]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[271]  B. Hwang,et al.  Simultaneous Reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 As Evidenced by X-ray Absorption Spectroscopy during Electrochemical Sodium Intercalation , 2014 .

[272]  Thomas J. Richardson,et al.  Lithium insertion processes of orthorhombic Na{sub x}MnO{sub 2}-based electrode materials , 1996 .

[273]  R. Kanno,et al.  Synthesis, structure and electrochemical properties of layered material, Li2/3[Mn1/3Fe2/3]O2, with mixed stacking states , 2003 .

[274]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[275]  A. Hagfeldt,et al.  LI AND NA DIFFUSION IN TIO2 FROM QUANTUM CHEMICAL THEORY VERSUS ELECTROCHEMICAL EXPERIMENT , 1997 .

[276]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[277]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[278]  Takayuki Yamamoto,et al.  Thermodynamic studies on Sn–Na alloy in an intermediate temperature ionic liquid NaFSA–KFSA at 363 K , 2013 .

[279]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[280]  Yuki Yamada,et al.  Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents , 2013 .

[281]  J. Dahn,et al.  O 2‐Type Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries II. Structure, Composition, and Properties , 2000 .

[282]  L. Stievano,et al.  Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries , 2013 .

[283]  J. Dahn,et al.  Structure and electrochemistry of LixCryCo1−yO2 , 1994 .

[284]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[285]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[286]  P. Biensan,et al.  A 7Li NMR study of a hard carbon for lithium–ion rechargeable batteries , 2000 .

[287]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[288]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[289]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[290]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[291]  山本 治,et al.  Lithium ion batteries : fundamentals and performance , 1998 .

[292]  Jun-ichi Yamaki,et al.  Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries , 2009 .

[293]  R. Hagiwara,et al.  Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries , 2012 .

[294]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[295]  A. Omaru,et al.  Structural and Electrochemical Characterizations on Li2MnO3-LiCoO2-LiCrO2 System as Positive Electrode Materials for Rechargeable Lithium Batteries , 2013 .

[296]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[297]  K. Sawai,et al.  Materials Strategy for Advanced Lithium-Ion (Shuttlecock) Batteries: Lithium Nickel Manganese Oxides with or without Cobalt , 2005 .

[298]  N. Choi,et al.  Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery , 2009 .

[299]  Yuki Yamada,et al.  Correlation between Charge−Discharge Behavior of Graphite and Solvation Structure of the Lithium Ion in Propylene Carbonate-Containing Electrolytes , 2009 .

[300]  H. Morito,et al.  Na–Si binary phase diagram and solution growth of silicon crystals , 2009 .

[301]  J. Dahn,et al.  The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys , 2003 .

[302]  P. Hagenmuller,et al.  Influence de l'environnement de l'ion alcalin sur sa mobilite dans les structures a feuillets Ax(LxM1−x)O2 , 1979 .

[303]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[304]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[305]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[306]  S. Komaba,et al.  Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries , 2010 .

[307]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[308]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .

[309]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[310]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[311]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[312]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[313]  T. Ohzuku,et al.  Nonaqueous lithium/titanium dioxide cell , 1979 .

[314]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[315]  J. Tarascon,et al.  Chemical and electrochemical insertion of Na into the spinel λ-MnO2 phase , 1992 .

[316]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[317]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[318]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[319]  Shoji Yamaguchi,et al.  Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode , 2004 .

[320]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[321]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[322]  Amit Kumar,et al.  Porous amorphous carbon models from periodic Gaussian chains of amorphous polymers , 2005 .

[323]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[324]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[325]  J-M Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[326]  R. Kanno,et al.  Structure Characterization and Lithiation Mechanism of Nongraphitized Carbon for Lithium Secondary Batteries , 2006 .

[327]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[328]  Hiroshi Senoh,et al.  Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries , 2014, Scientific Reports.

[329]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[330]  Kazuma Gotoh,et al.  Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by 7Li NMR , 2006 .

[331]  P. Novák,et al.  Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide , 1995 .

[332]  R. Bissessur,et al.  Unique properties of α-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution , 2013 .

[333]  J. Conard,et al.  Lithium NMR in Lithium-Carbon Solid State Compounds , 2000 .

[334]  Marca M. Doeff,et al.  Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries , 1994 .

[335]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[336]  D. Aurbach,et al.  Comparison Between the Electrochemical Behavior of Disordered Carbons and Graphite Electrodes in Connection with Their Structure , 2001 .

[337]  Min Zhou,et al.  Nanosized Na4Fe(CN)6/C Composite as a Low‐Cost and High‐Rate Cathode Material for Sodium‐Ion Batteries , 2012 .

[338]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[339]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[340]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[341]  P. Hagenmuller,et al.  A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .

[342]  J. Dahn,et al.  Layered T2-, O6-, O2-, and P2-Type A2/3[M‘2+1/3M4+2/3]O2 Bronzes, A = Li, Na; M‘ = Ni, Mg; M = Mn, Ti , 2000 .

[343]  K. W. Kim,et al.  Electrochemical properties of sodium/pyrite battery at room temperature , 2007 .

[344]  A. Hayashi,et al.  All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode , 2010 .

[345]  Linda F. Nazar,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .

[346]  J. Yamaki,et al.  Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds , 2013 .

[347]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[348]  Y. Orikasa,et al.  Pyrophosphate Na 2 FeP 2 O 7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid , 2014 .

[349]  Kazunori Takada,et al.  Superconductivity in two-dimensional CoO2 layers , 2003, Nature.

[350]  S. Komaba,et al.  A comparative study of LiCoO2 polymorphs: structural and electrochemical characterization of O2-, O3-, and O4-type phases. , 2013, Inorganic chemistry.

[351]  S. Komaba,et al.  High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries , 2012 .

[352]  Huilin Pan,et al.  Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .

[353]  P. Hagenmuller,et al.  A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction , 1982 .

[354]  Yang-Kook Sun,et al.  Titanium‐Based Anode Materials for Safe Lithium‐Ion Batteries , 2013 .

[355]  Haoshen Zhou,et al.  Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device , 2013, Nature Communications.

[356]  Jeremy Barker,et al.  Hybrid-Ion A Lithium-Ion Cell Based on a Sodium Insertion Material , 2006 .

[357]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[358]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[359]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[360]  Y. Takeda,et al.  Carbon as negative electrodes in lithium secondary cells , 1989 .

[361]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[362]  K. Amine,et al.  Nanostructured TiO2 and Its Application in Lithium‐Ion Storage , 2011 .

[363]  C. Delmas,et al.  Non-cooperative Jahn-Teller effect in LiNiO2: An EXAFS study , 1995 .

[364]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[365]  A. Tagliaferro,et al.  Introduction to Carbon Materials , 2015 .

[366]  C. Delmas,et al.  Sodium ion mobility in Na(x)CoO2 (0.6 < x < 0.75) cobaltites studied by 23Na MAS NMR. , 2009, Inorganic chemistry.

[367]  Marca M. Doeff,et al.  Rechargeable Na/Na[sub x]CoO[sub 2] and Na[sub 15]Pb[sub 4]/Na[sub x]CoO[sub 2] polymer electrolyte cells , 1993 .

[368]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[369]  Jun-ichi Yamaki,et al.  Cathode properties of metal trifluorides in Li and Na secondary batteries , 2009 .

[370]  H. Marsh,et al.  Lattice-resolution electron microscopy in structural studies of non-graphitizing carbons from polyvinylidene chloride (PVDC) , 1975 .

[371]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[372]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[373]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[374]  S. Andersson,et al.  The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates , 1962 .

[375]  Y. Shao-horn,et al.  On the mechanism of the P2–Na0.70CoO2→O2–LiCoO2 exchange reaction—Part I: proposition of a model to describe the P2–O2 transition , 2004 .

[376]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.

[377]  Laurence Croguennec,et al.  On the metastable O2-type LiCoO2 , 2001 .

[378]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[379]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .