Molecular dynamics simulation of a smectic liquid crystal with atomic detail

A molecular dynamics simulation of a sodium–decanoate/decanol/water system is reported. The system is treated in full atomic detail, with the exception of CH2 and CH3 groups that are considered to be ‘‘united atoms,’’ and is a refinement of a previous model membrane [Mol. Phys. 11, 1 (1983)]. The long‐range Coulomb interactions were included specifically. The order parameters of the chain units of the lipids and diffusion constants of components in the system calculated from the simulation agree well with those reported in experiments on this model membrane. The overall structure of the membrane shows considerable disorder, with a broad lipid–water interface, extending over approximately 1 nm. The distribution of the components is such that an almost complete charge cancellation occurs throughout the system, which is in contradiction with the generally assumed electrical double layer structure for membranes. A counterion condensation of 70% is observed. Both the translational and the rotational motions of...

[1]  H. Träuble,et al.  The movement of molecules across lipid membranes: A molecular theory , 1971, The Journal of Membrane Biology.

[2]  B. Halle,et al.  Ion Distributions in Lamellar Liquid Crystals. A Comparison between Results from Monte Carlo Simulations and Solutions of the Poisson-Boltzmann Equation , 1980 .

[3]  Herman J. C. Berendsen,et al.  CONFORMATIONAL ENTROPY OF A BILAYER-MEMBRANE DERIVED FROM A MOLECULAR-DYNAMICS SIMULATION , 1983 .

[4]  J. Seelig Spin label studies of oriented smectic liquid crystals (a model system for bilayer membranes) , 1970 .

[5]  G. Klose,et al.  Tautomerie von 2-Picolylketonen , 1966 .

[6]  E. Helfand,et al.  Brownian dynamics study of transitions in a polymer chain of bistable oscillators , 1978 .

[7]  J. Nagle Chain model theory of lipid monolayer transitions , 1975 .

[8]  D. Gruen A model for the chains in amphiphilic aggregates. 1. Comparison with a molecular dynamics simulation of a bilayer , 1985 .

[9]  S. Marčelja,et al.  Chain ordering in liquid crystals. II. Structure of bilayer membranes. , 1974, Biochimica et biophysica acta.

[10]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[11]  Bo Jönsson,et al.  Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution , 1986 .

[12]  J. Seelig,et al.  Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments. , 1974, Biochemistry.

[13]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[14]  J. Seelig Deuterium magnetic resonance: theory and application to lipid membranes , 1977, Quarterly Reviews of Biophysics.

[15]  D. N. Pinder,et al.  The measurement of diffusion using deuterium pulsed field gradient nuclear magnetic resonance , 1983 .

[16]  P. Rigny,et al.  Deuteron relaxation study of D2O motions in a lyotropic liquid crystal , 1973 .

[17]  E. Clementi,et al.  Study of the structure of molecular complexes. II. Energy surfaces for a water molecule in the field of a sodium or potassium cation , 1973 .

[18]  M. Wilkins,et al.  Multilayers of Phospholipid Bimolecular Leaflets , 1968, Nature.

[19]  F. Leermakers,et al.  On the statistical thermodynamics of membrane formation. , 1983, Biophysical Chemistry.

[20]  J. Seelig,et al.  EPR spectra of spin labels in lipid bilayers. II. Rotation of steroid spin probes , 1973 .

[21]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[22]  Fritz Jähnigb Molecular theory of lipid membrane ordera) , 1979 .

[23]  S. Yip,et al.  Molecular dynamics simulation of dielectric properties of water , 1987 .

[24]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[25]  A. Skoulios,et al.  Interactions électriques dans les phases mésomorphes des systèmes amphiphile-eau: Rôle de la teneur en eau, de la longueur de la chaîne paraffinique, de la nature du cation, et de la température , 1966 .

[26]  Harold A. Scheraga,et al.  Refinement of X ray data on proteins. II. Adjustment of structure of specified geometry to relieve atomic overlaps , 1973 .

[27]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[28]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .

[29]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[30]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[31]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .