Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

Abstract As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

[1]  Martin Losch,et al.  Modeling ice shelf cavities in a z coordinate ocean general circulation model , 2008 .

[2]  Bernard Barnier,et al.  Variability of the meridional overturning circulation of the North Atlantic: sensitivity to overflows of dense water masses , 2004 .

[3]  B. Samuels,et al.  An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations , 2015 .

[4]  William R. Young,et al.  An Exact Thickness-Weighted Average Formulation of the Boussinesq Equations , 2012 .

[5]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[6]  R. Samelson,et al.  Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension , 2010 .

[7]  Xiaopei Lin,et al.  Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns? , 2015, Scientific Reports.

[8]  Michael P. Meredith,et al.  Sensitivity of the Overturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing , 2011 .

[9]  R. Hallberg,et al.  Energy budget-based backscatter in an eddy permitting primitive equation model , 2015 .

[10]  J. Whitehead Topographic control of oceanic flows in deep passages and straits , 1998 .

[11]  Chris Harris,et al.  Improved Atlantic winter blocking in a climate model , 2011 .

[12]  D. Munday,et al.  Does the sensitivity of Southern Ocean circulation depend upon bathymetric details? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  John Marshall,et al.  Formulation and implementation of a ''residual-mean'' ocean circulation model , 2006 .

[14]  R. Ferrari,et al.  Symmetric instability in the Gulf Stream , 2013 .

[15]  L. Beal,et al.  Modulation of SST Interannual Variability in the Agulhas Leakage Region Associated with ENSO , 2016 .

[16]  Julia V. Manganello,et al.  Oceanic influence on the North Atlantic Oscillation and associated northern hemisphere climate variations: 1959–1993 , 2000 .

[17]  G. Vecchi,et al.  Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model , 2012 .

[18]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[19]  Stephen M. Griffies,et al.  Vertical resolution of baroclinic modes in global ocean models , 2017 .

[20]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[21]  C. Frankignoul,et al.  Transient Atmospheric Response to Interactive SST Anomalies , 2008 .

[22]  PierGianLuca Porta Mana,et al.  Toward a stochastic parameterization of ocean mesoscale eddies , 2014 .

[23]  Gurvan Madec,et al.  Modifications of gyre circulation by sub-mesoscale physics , 2010 .

[24]  J. Molines,et al.  A global probabilistic study of the ocean heat content low‐frequency variability: Atmospheric forcing versus oceanic chaos , 2017 .

[25]  Romain Bourdallé-Badie,et al.  The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution version of the Met Office GC2 coupled model , 2016 .

[26]  P. Gent Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models. , 2016, Annual review of marine science.

[27]  Hartmut Peters,et al.  Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team , 2009 .

[28]  S. Griffies,et al.  Has coarse ocean resolution biased simulations of transient climate sensitivity? , 2014 .

[29]  C. Frankignoul Sea surface temperature anomalies, planetary waves, and air‐sea feedback in the middle latitudes , 1985 .

[30]  Gabriel A. Vecchi,et al.  Enhanced warming of the Northwest Atlantic Ocean under climate change , 2016 .

[31]  H. Nakamura,et al.  Potential Influence of a Midlatitude Oceanic Frontal Zone on the Annular Variability in the Extratropical Atmosphere as Revealed by Aqua-Planet Experiments (Special Issue on The Aqua-Planet Experiment Project (APE) and Related Researches) , 2013 .

[32]  Thomas W. N. Haine,et al.  Gravitational, Symmetric, and Baroclinic Instability of the Ocean Mixed Layer , 1998 .

[33]  S. Foreman The Ocean as a Component of the Climate System , 1990 .

[34]  Helene T. Hewitt,et al.  Impact of ocean resolution on coupled air‐sea fluxes and large‐scale climate , 2016 .

[35]  R. Sutton,et al.  Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation* , 2002 .

[36]  Yannice Faugère,et al.  DUACS DT 2014 : the new multi-mission altimeter data set reprocessed over 20 years , 2016 .

[37]  Robert Hallberg,et al.  Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects , 2013 .

[38]  Eric P. Chassignet,et al.  Impact of wind forcing, bottom topography, and inertia on midlatitude jet separation in a quasigeostrophic model , 1997 .

[39]  Chris Huntingford,et al.  Model complexity versus ensemble size: allocating resources for climate prediction , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  C. Frankignoul,et al.  The Transient Atmospheric Response to Midlatitude SST Anomalies , 2005 .

[41]  Michael Mayer,et al.  Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985–2012 , 2015 .

[42]  E. Guilyardi,et al.  Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM , 2007 .

[43]  Frank O. Bryan,et al.  Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model , 2017 .

[44]  John P. Krasting,et al.  Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models , 2015 .

[45]  J. Slingo,et al.  Upper-ocean heat budget and ocean eddy transport in the south-east Pacific in a high-resolution coupled model , 2010 .

[46]  Rhys Parfitt,et al.  The impact of SST resolution change in the ERA‐Interim reanalysis on wintertime Gulf Stream frontal air‐sea interaction , 2017 .

[47]  Thomas Jung,et al.  Systematic Model Error: The Impact of Increased Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations , 2012 .

[48]  Jonathan L. Bamber,et al.  Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean , 2016 .

[49]  Christopher S. Bretherton,et al.  An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution , 2000 .

[50]  Julien Boé,et al.  Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model , 2016, Climate Dynamics.

[51]  H. Hurlburt,et al.  Steering of upper ocean currents and fronts by the topographically constrained abyssal circulation , 2008 .

[52]  R. Greatbatch,et al.  On Parameterizing Vertical Mixing of Momentum in Non-eddy Resolving Ocean Models , 1990 .

[53]  M. Rodwell,et al.  Oceanic forcing of the wintertime North Atlantic Oscillation and European climate , 1999, Nature.

[54]  Richard J. Greatbatch,et al.  Western boundary currents regulated by interaction between ocean eddies and the atmosphere , 2016, Nature.

[55]  J. Marshall,et al.  Residual-Mean Solutions for the Antarctic Circumpolar Current and Its Associated Overturning Circulation , 2003 .

[56]  Frank O. Bryan,et al.  Impact of ocean model resolution on CCSM climate simulations , 2012, Climate Dynamics.

[57]  R. Saravanan Atmospheric Low-Frequency Variability and Its Relationship to Midlatitude SST Variability: Studies Using the NCAR Climate System Model*. , 1998 .

[58]  Shoshiro Minobe,et al.  Influence of the Gulf Stream on the troposphere , 2008, Nature.

[59]  Baylor Fox-Kemper,et al.  Parameterization of Mixed Layer Eddies. I: Theory and Diagnosis , 2007 .

[60]  Brian J. Hoskins,et al.  Impact of Gulf Stream SST biases on the global atmospheric circulation , 2018, Climate Dynamics.

[61]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[62]  Thierry Penduff,et al.  Mesoscale Eddies in the Labrador Sea and Their Contribution to Convection and Restratification , 2008 .

[63]  Silvio Jamil Ferzoli Guimarães,et al.  Evaluation of Scale-Aware Realignments of Hierarchical Image Segmentation , 2018, CIARP.

[64]  A. Jenkins,et al.  Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf , 2017, Nature.

[65]  J. Richman,et al.  Energetics of a global ocean circulation model compared to observations , 2011 .

[66]  D. Lawrence,et al.  A new synoptic scale resolving global climate simulation using the Community Earth System Model , 2014 .

[67]  H. Haak,et al.  Vertical heat and salt fluxes due to resolved and parameterized meso-scale Eddies , 2016 .

[68]  S. Griffies,et al.  Sensitivity of abyssal water masses to overflow parameterisations , 2015 .

[69]  Robert Hallberg,et al.  The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project , 2006 .

[70]  Stephen M. Griffies,et al.  The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change , 2010 .

[71]  Andrew T. Wittenberg,et al.  Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models , 2015 .

[72]  T. Stockdale,et al.  The Ocean’s Role in Modeling and Predicting Seasonal-to-Interannual Climate Variations , 2013 .

[73]  M. Maltrud,et al.  Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records , 2010 .

[74]  J. McWilliams,et al.  Modulation of the Agulhas Current Retroflection and Leakage by Oceanic Current Interaction with the Atmosphere in Coupled Simulations , 2017 .

[75]  I. Held,et al.  Parameterizing subgrid-scale eddy effects using energetically consistent backscatter , 2014 .

[76]  Stuart A. Cunningham,et al.  The North Atlantic subpolar circulation in an eddy-resolving global ocean model , 2015 .

[77]  E. Curchitser,et al.  On the Evaluation of Seasonal Variability of the Ocean Kinetic Energy , 2017 .

[78]  N. Picot,et al.  Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents , 2014 .

[79]  P. Gent,et al.  Southern Ocean Deep Circulation and Heat Uptake in a High-Resolution 1 Climate Model 2 , 2016 .

[80]  Anand Gnanadesikan,et al.  Transient Response in a Z-Level Ocean Model That Resolves Topography with Partial Cells , 1998 .

[81]  J. Gregory Vertical heat transports in the ocean and their effect on time-dependent climate change , 2000 .

[82]  Jonathan M. Gregory,et al.  Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling , 2012 .

[83]  Shang-Ping Xie,et al.  Satellite Observations of Cool Ocean–Atmosphere Interaction , 2004 .

[84]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[85]  E. Joseph Metzger,et al.  Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean , 1996 .

[86]  E. Behrens The oceanic response to Greenland melting: the effect of increasing model resolution , 2013 .

[87]  D. Marshall,et al.  Eddy Cancellation of the Ekman Cell in Subtropical Gyres , 2016 .

[88]  S. Griffies,et al.  A dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation , 2012 .

[89]  J. R. Maddison,et al.  The Eliassen–Palm flux tensor , 2013, Journal of Fluid Mechanics.

[90]  Patrick Heimbach,et al.  OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project , 2016 .

[91]  J. Berntsen,et al.  Regional simulations of the Faroe Bank Channel overflow using a σ-coordinate ocean model , 2010 .

[92]  Frank O. Bryan,et al.  Frontal scale air-sea interaction in high-resolution coupled climate models , 2010 .

[93]  P. Richardson Average velocity and transport of the Gulf Stream near 55W , 1985 .

[94]  Jonathan M. Gregory,et al.  A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component , 2015, Climate Dynamics.

[95]  Andrew Dawson,et al.  Simulating weather regimes: impact of model resolution and stochastic parameterization , 2015, Climate Dynamics.

[96]  Sonya Legg,et al.  Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models☆ , 2006 .

[97]  C. Deser,et al.  The Transient Atmospheric Circulation Response to North Atlantic SST and Sea Ice Anomalies , 2007 .

[98]  Jie He,et al.  Transient Climate Sensitivity Depends on Base Climate Ocean Circulation , 2017 .

[99]  H. Mitsudera,et al.  “Hot Spots” in the climate system—new developments in the extratropical ocean–atmosphere interaction research: a short review and an introduction , 2015, Journal of Oceanography.

[100]  Patrick J. Hogan,et al.  Impact of 1/8° to 1/64° resolution on Gulf Stream model–data comparisons in basin-scale subtropical Atlantic Ocean models , 2000 .

[101]  Bo Qiu,et al.  Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales , 2005 .

[102]  G. Hegerl,et al.  Detection and attribution of climate change: from global to regional , 2013 .

[103]  Dirk Olbers,et al.  The Antarctic Circumpolar Current System , 1999 .

[104]  S. Griffies,et al.  A dynamic, embedded Lagrangian model for ocean climate models, Part II: Idealised overflow tests , 2012 .

[105]  T. McDougall Thermobaricity, Cabbeling, and Water-Mass Conversion , 1987 .

[106]  Simon Wilson,et al.  U.K. HiGEM: The New U.K. High-Resolution Global Environment Model― Model Description and Basic Evaluation , 2009 .

[107]  Harold Solomon On the Representation of Isentropic Mixing in Ocean Circulation Models , 1971 .

[108]  Frank O. Bryan,et al.  The NCAR Climate System Model Global Ocean Component , 1998 .

[109]  L. Kornblueh,et al.  Advancing decadal-scale climate prediction in the North Atlantic sector , 2008, Nature.

[110]  C. Deser,et al.  Investigating the Impact of Reemerging Sea Surface Temperature Anomalies on the Winter Atmospheric Circulation over the North Atlantic , 2007 .

[111]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[112]  D. Marshall,et al.  Emergent eddy saturation from an energy constrained eddy parameterisation , 2016, 1610.00621.

[113]  Shoshiro Minobe,et al.  Atmospheric Response to the Gulf Stream: Seasonal Variations* , 2010 .

[114]  G. Madec,et al.  How momentum advection schemes influence current-topography interactions at eddy permitting resolution , 2009 .

[115]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[116]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[117]  G. Danabasoglu,et al.  The Role of Mesoscale Tracer Transports in the Global Ocean Circulation , 1994, Science.

[118]  Aixue Hu,et al.  Uncertainty in future regional sea level rise due to internal climate variability , 2013 .

[119]  Brian J. Hoskins,et al.  The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing , 1981 .

[120]  H. Dacre,et al.  Contribution of the cold sector of extratropical cyclones to mean state features over the Gulf Stream in winter , 2017 .

[121]  H. Nakamura,et al.  On the Significance of the Sensible Heat Supply from the Ocean in the Maintenance of the Mean Baroclinicity along Storm Tracks , 2011 .

[122]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[123]  Alistair Adcroft,et al.  Representation of topography by porous barriers and objective interpolation of topographic data , 2013 .

[124]  John K. Dukowicz,et al.  Isoneutral Diffusion in a z-Coordinate Ocean Model , 1998 .

[125]  Robert Hallberg,et al.  Simulation of Density-Driven Frictional Downslope Flow in Z-Coordinate Ocean Models , 1998 .

[126]  L. Beal,et al.  On the role of the Agulhas system in ocean circulation and climate , 2011, Nature.

[127]  Peter Cornillon,et al.  Air–sea interaction over ocean fronts and eddies , 2008 .

[128]  Dudley B. Chelton,et al.  Coupled ocean-atmosphere interaction at oceanic mesoscales , 2010 .

[129]  Rhys Parfitt,et al.  The atmospheric frontal response to SST perturbations in the Gulf Stream region , 2016 .

[130]  Jian Lu,et al.  High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 , 2016 .

[131]  M. Oppenheimer,et al.  Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior , 2012 .

[132]  Mike Ashworth,et al.  Prospects for improving the representation of coastal and shelf seas in global ocean models , 2016 .

[133]  Stephen M. Griffies,et al.  Localized rapid warming of West Antarctic subsurface waters by remote winds , 2017 .

[134]  Frank O. Bryan,et al.  A prototype two-decade fully-coupled fine-resolution CCSM simulation , 2010 .

[135]  S. Levitus,et al.  A diagnosis of interpentadal circulation changes in the North Atlantic , 1991 .

[136]  Stephen M. Griffies,et al.  Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds , 2014 .

[137]  E. Chassignet,et al.  Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability , 2017 .

[138]  M. Jeroen Molemaker,et al.  Control and Stabilization of the Gulf Stream by Oceanic Current Interaction with the Atmosphere , 2016 .

[139]  Benjamin Kirtman,et al.  Atlantic near‐term climate variability and the role of a resolved Gulf Stream , 2016 .

[140]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[141]  M. Ghil,et al.  A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model , 2007 .

[142]  M. Jeroen Molemaker,et al.  Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? , 2012 .

[143]  Doug M. Smith,et al.  A ‘warm path’ for Gulf Stream–troposphere interactions , 2017 .

[144]  D. N. Walters,et al.  The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations , 2017 .

[145]  Hisashi Nakamura,et al.  Importance of Resolving Kuroshio Front and Eddy Influence in Simulating the North Pacific Storm Track , 2017 .

[146]  Adam A. Scaife,et al.  Re-emergence of North Atlantic subsurface ocean temperature anomalies in a seasonal forecast system , 2019, Climate Dynamics.

[147]  Yeon S. Chang,et al.  Pathways of Nordic Overflows from climate model scale and eddy resolving simulations , 2009 .

[148]  T. Stocker The ocean as a component of the climate system , 2013 .

[149]  S. Griffies,et al.  On Geometrical Aspects of Interior Ocean Mixing , 2014 .

[150]  Paul D. Williams,et al.  Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies , 2016 .

[151]  Qingtao Song,et al.  Coupling between Sea Surface Temperature and Low-Level Winds in Mesoscale Numerical Models , 2009 .

[152]  Ryan Abernathey,et al.  The Dependence of Southern Ocean Meridional Overturning on Wind Stress , 2011 .

[153]  PierGianLuca Porta Mana,et al.  Scale-aware deterministic and stochastic parametrizations of eddy-mean flow interaction , 2017 .

[154]  P. Berloff Random-forcing model of the mesoscale oceanic eddies , 2005, Journal of Fluid Mechanics.

[155]  Yannice Faugère,et al.  DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20years , 2016 .

[156]  Kevin I. Hodges,et al.  Can Climate Models Capture the Structure of Extratropical Cyclones , 2010 .

[157]  Jean-Michel Brankart,et al.  Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling , 2013 .

[158]  M. Gehlen,et al.  Standing and Transient Eddies in the Response of the Southern Ocean Meridional Overturning to the Southern Annular Mode , 2012 .

[159]  Gary B. Brassington,et al.  Progress and challenges in short- to medium-range coupled prediction , 2015 .

[160]  B. Fox‐Kemper Reevaluating the Roles of Eddies in Multiple Barotropic Wind-Driven Gyres , 2005 .

[161]  Adam A. Scaife,et al.  Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? , 2014, Geophysical research letters.

[162]  Adam A. Scaife,et al.  Skilful multi-year predictions of Atlantic hurricane frequency , 2010 .

[163]  David P. Stevens,et al.  Impact of Resolution on the Tropical Pacific Circulation in a Matrix of Coupled Models , 2009 .

[164]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[165]  L. Zanna,et al.  A deformation-based parametrization of ocean mesoscale eddy reynolds stresses , 2017 .

[166]  H. Hurlburt,et al.  Impact of Upper Ocean–Topographical Coupling and Isopycnal Outcropping in Japan/East Sea Models with 1/8° to 1/64° Resolution , 2000 .

[167]  R. Hallberg,et al.  Representations of the Nordic Seas overflows and their large scale climate impact in coupled models , 2015 .

[168]  Dudley B. Chelton,et al.  An Assessment of the Sea Surface Temperature Influence on Surface Wind Stress in Numerical Weather Prediction and Climate Models , 2006 .

[169]  Gokhan Danabasoglu,et al.  Climate impacts of parameterized Nordic Sea overflows , 2010 .

[170]  Robert A. Weller,et al.  Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables , 2008 .

[171]  J. R. E. Lutjeharms,et al.  Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation , 2008, Nature.

[172]  S. Legg,et al.  Regional simulations of the Faroe Bank Channel overflow in a level model , 2007 .

[173]  Reto Knutti,et al.  Imprint of Southern Ocean eddies on winds, clouds and rainfall , 2013 .

[174]  M. Latif The oceans' role in modeling and predicting decadal climate variations , 2013 .

[175]  P. Gent,et al.  Southern ocean overturning compensation in an eddy-resolving climate simulation , 2016 .

[176]  Thierry Penduff,et al.  Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales , 2010 .

[177]  A. Hogg,et al.  Sensitivity of Antarctic Bottom Water to Changes in Surface Buoyancy Fluxes , 2016 .

[178]  Thierry Penduff,et al.  Sea Level Expression of Intrinsic and Forced Ocean Variabilities at Interannual Time Scales , 2011 .

[179]  Young-Oh Kwon,et al.  Investigating the Local Atmospheric Response to a Realistic Shift in the Oyashio Sea Surface Temperature Front , 2015 .

[180]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[181]  Michael P. Meredith,et al.  Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode , 2006 .

[182]  A. Thompson,et al.  Eddy‐mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break , 2014 .

[183]  Richard A. Wood,et al.  Topographic Sensitivity Studies with a Bryan–Cox-Type Ocean Model , 1997 .

[184]  Kevin I. Hodges,et al.  Northern Hemisphere Extratropical Cyclones in a Warming Climate in the HiGEM High-Resolution Climate Model , 2011 .

[185]  David P. Marshall,et al.  Eddy Saturation of Equilibrated Circumpolar Currents , 2013 .

[186]  A. P. Siebesma,et al.  Climate goals and computing the future of clouds , 2017 .

[187]  Thierry Penduff,et al.  Intrinsic Variability of the Atlantic Meridional Overturning Circulation at Interannual-to-Multidecadal Time Scales , 2015 .

[188]  Parameterized Slantwise Convection in a Numerical Model , 1992 .

[189]  John Siddorn,et al.  GO5.0: The joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications , 2013 .

[190]  S. Rintoul,et al.  The response of the Antarctic Circumpolar Current to recent climate change , 2008 .

[191]  A. Hogg,et al.  The role of vertical eddy flux in Southern Ocean heat uptake , 2013 .