Towards a hybrid framework for the visualization and analysis of 3D spatial data

Several geospatial problems like urban subsurface analysis involve data from multiple domains and nature. For instance, an urban infrastructure analysis must take into account not only the urban elements but their geological environment. This requires the definition of hybrid schemes and algorithms that keep the dimensionality and domain of the data, while allowing the joint management of both representations in a combined way. In addition, a proper 3D visualization method that shows those heterogeneous data together can be very useful for geoscientific and GIS professionals. In this paper, we present the foundations of a real-time 3D visualization framework capable of rendering field and vector data, as well as a set of operations that can solve many problems for engaging data from different domains. We propose the use of the Stack-Based Representation of Terrains for field data which provides a whole 3D representation of volumetric terrains while allowing an efficient memory usage. The resulting hybrid framework can help geoscientists and engineers to analyze 3D complex geospatial data and make decisions at a glance.

[1]  Graham Sellers,et al.  OpenGL SuperBible: Comprehensive Tutorial and Reference , 2007 .

[2]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[3]  Michael F. Goodchild,et al.  Towards a General Field model and its order in GIS , 2008, Int. J. Geogr. Inf. Sci..

[4]  Dayong Shen,et al.  An ArcScene plug-in for volumetric data conversion, modeling and spatial analysis , 2013, Comput. Geosci..

[5]  H Davies,et al.  Channel Tunnel Rail Link, planning, design and associated urban development , 2004 .

[6]  Tao Chen,et al.  Data structures and intersection algorithms for 3D spatial data types , 2009, GIS.

[7]  Michael F. Goodchild,et al.  Towards a general theory of geographic representation in GIS , 2007, Int. J. Geogr. Inf. Sci..

[8]  Stephen Glackin,et al.  A web-based 3D visualisation and assessment system for urban precinct scenario modelling , 2016 .

[9]  Sisi Zlatanova,et al.  3D-GEM: Geo-technical extension towards an integrated 3D information model for infrastructural development , 2014, Comput. Geosci..

[10]  Matthias Kreuseler,et al.  Visualization of geographically related multidimensional data in virtual 3D scenes , 2000 .

[11]  Haibo Hu,et al.  An algorithm for converting weather radar data into GIS polygons and its application in severe weather warning systems , 2014, Int. J. Geogr. Inf. Sci..

[12]  Antonio Francipane,et al.  Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping , 2016, Environ. Model. Softw..

[13]  Leila De Floriani,et al.  Morphology analysis of 3D scalar fields based on morse theory and discrete distortion , 2009, GIS.

[14]  Sisi Zlatanova,et al.  3D Spatial Information Infrastructure for the Port of Rotterdam , 2013 .

[15]  Lutz Plümer,et al.  CityGML – Interoperable semantic 3D city models , 2012 .

[16]  Sisi Zlatanova,et al.  UML‐Based Approach to Developing a CityGML Application Domain Extension , 2013, Trans. GIS.

[17]  Stephen Brooks,et al.  Multilayer hybrid visualizations to support 3D GIS , 2008, Comput. Environ. Urban Syst..

[18]  Zhihan Lv,et al.  ARGIS-based outdoor underground pipeline information system , 2016, J. Vis. Commun. Image Represent..

[19]  Yang Zhou,et al.  A parallelized screen-based method for rendering polylines and polygons on terrain surfaces , 2017, Comput. Geosci..

[20]  Anders Vest Christiansen,et al.  A method for cognitive 3D geological voxel modelling of AEM data , 2013, Bulletin of Engineering Geology and the Environment.

[21]  Oriol Pueyo,et al.  Structuring urban data , 2013, The Visual Computer.

[22]  Yujiao Chen,et al.  Integrated design workflow and a new tool for urban rainwater management. , 2015, Journal of environmental management.

[23]  Jürgen Döllner,et al.  Interactive 3D visualization of vector data in GIS , 2002, GIS '02.

[24]  G. Gröger,et al.  Transaction rules for updating surfaces in 3D GIS , 2012 .

[25]  Renato Pajarola,et al.  Vector Map Constrained Path Bundling in 3D Environments , 2015, IWGS.

[26]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[27]  David H. Eberly,et al.  Geometric Tools for Computer Graphics , 2002 .

[28]  Filip Biljecki,et al.  Generating 3D city models without elevation data , 2017, Comput. Environ. Urban Syst..

[29]  J. Gunnink,et al.  Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands , 2013, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[30]  Sisi Zlatanova,et al.  3D spatial information infrastructure: The case of Port Rotterdam , 2012 .

[31]  Guonian Lü,et al.  Multidimensional-unified topological relations computation: a hierarchical geometric algebra-based approach , 2014, Int. J. Geogr. Inf. Sci..

[32]  David J. Maguire,et al.  Geographic Information Science and Systems, 4/E. , 2016 .

[33]  Lixin Wu,et al.  Towards Automatic and Topologically Consistent 3D Regional Geological Modeling from Boundaries and Attitudes , 2016, ISPRS Int. J. Geo Inf..

[34]  Gerd Hesina,et al.  Vis-A-Ware: Integrating Spatial and Non-Spatial Visualization for Visibility-Aware Urban Planning , 2017, IEEE Transactions on Visualization and Computer Graphics.

[35]  Philippe Renard,et al.  A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units , 2009, Comput. Geosci..

[36]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[37]  A. Scianna,et al.  Building 3D GIS data models using open source software , 2013 .

[38]  Peter van Oosterom,et al.  A simplicial complex‐based DBMS approach to 3D topographic data modelling , 2008, Int. J. Geogr. Inf. Sci..

[39]  Cláudio T. Silva,et al.  Urbane: A 3D framework to support data driven decision making in urban development , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[40]  Leila De Floriani,et al.  Topological modifications and hierarchical representation of cell complexes in arbitrary dimensions , 2014, Comput. Vis. Image Underst..

[41]  Francisco R. Feito-Higueruela,et al.  Real-time visualization of 3D terrains and subsurface geological structures , 2018, Adv. Eng. Softw..

[42]  Yi Zheng,et al.  Development of a visualization tool for integrated surface water-groundwater modeling , 2016, Comput. Geosci..

[43]  Bedrich Benes,et al.  Layered data representation for visual simulation of terrain erosion , 2001, Proceedings Spring Conference on Computer Graphics.