Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR

In this paper, the potential of using polarimetric SAR (PolSAR) acquisitions for the estimation of volumetric soil moisture under agricultural vegetation is investigated. Soil-moisture estimation by means of SAR is a topic that is intensively investigated but yet not solved satisfactorily. The key problem is the presence of vegetation cover which biases soil-moisture estimates. In this paper, we discuss the problem of soil-moisture estimation in the presence of agricultural vegetation by means of L-band PolSAR images. SAR polarimetry allows the decomposition of the scattering signature into canonical scattering components and their quantification. We discuss simple canonical models for surface, dihedral, and vegetation scattering and use them to model and interpret scattering processes. The performance and modifications of the individual scattering components are discussed. The obtained surface and dihedral components are then used to retrieve surface soil moisture. The investigations cover, for the first time, the whole vegetation-growing period for three crop types using SAR data and ground measurements acquired in the frame of the AgriSAR campaign.

[1]  Shane Cloude,et al.  The negative alpha filter: a new Processing technique for polarimetric SAR interferometry , 2005, IEEE Geoscience and Remote Sensing Letters.

[2]  Juan M. Lopez-Sanchez,et al.  Wide-band polarimetric radar inversion studies for vegetation layers , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[4]  S. Cloude Group theory and polarisation algebra , 1986 .

[5]  Laura Dente,et al.  Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Yoshio Inoue,et al.  Ku- and C-band SAR for discriminating agricultural crop and soil conditions , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  R. Cloude,et al.  Surface roughness and polarimetric entropy , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[9]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[10]  M. Schlesinger,et al.  The University of Illinois, Urbana-Champaign three-dimensional stratosphere-troposphere general circulation model with interactive ozone photochemistry: Fifteen-year control run climatology , 2001 .

[11]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  M. Moghaddam,et al.  Estimating subcanopy soil moisture with radar. , 2000 .

[13]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[14]  Kamal Sarabandi,et al.  Electromagnetic scattering from grassland. I. A fully phase-coherent scattering model , 2000, IEEE Trans. Geosci. Remote. Sens..

[15]  Maurice Borgeaud,et al.  Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996 , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[18]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[19]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[20]  Simonetta Paloscia,et al.  Simulating coherent backscattering from crops during the growing cycle , 2002, IEEE Trans. Geosci. Remote. Sens..

[21]  Dirk H. Hoekman,et al.  A new polarimetric classification approach evaluated for agricultural crops , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[24]  Kamal Sarabandi,et al.  Electromagnetic scattering from short branching vegetation , 2000, IEEE Trans. Geosci. Remote. Sens..

[25]  Malcolm Davidson,et al.  AgriSAR 2007 : airborne SAR and optics campaigns for an improved monitoring of agricultural processes and practices : abstract , 2007 .

[26]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  Bong Jae Lee,et al.  Partially Coherent Spectral Transmittance of Dielectric Thin Films with Rough Surfaces , 2005 .

[28]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[29]  Kamal Sarabandi,et al.  Electromagnetic scattering from grassland. II. Measurement and modeling results , 2000, IEEE Trans. Geosci. Remote. Sens..

[30]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[31]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .