Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data

[1]  Anthony J. Payne,et al.  Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells , 2018, Nature Genetics.

[2]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[3]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[4]  Kyle J. Gaulton,et al.  Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci , 2017, bioRxiv.

[5]  Stephen C. J. Parker,et al.  A Type 2 Diabetes–Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus , 2017, Diabetes.

[6]  Yang I Li,et al.  An Expanded View of Complex Traits: From Polygenic to Omnigenic , 2017, Cell.

[7]  Giovanni Malerba,et al.  Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes , 2017, Nature Genetics.

[8]  Tanya M. Teslovich,et al.  An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans , 2017, Diabetes.

[9]  C. Nian,et al.  SOX4 Allows Facultative β-Cell Proliferation Through Repression of Cdkn1a , 2017, Diabetes.

[10]  Nicholette D. Palmer,et al.  A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants , 2017, Diabetes.

[11]  Laura J. Scott,et al.  Genetic regulatory signatures underlying islet gene expression and type 2 diabetes , 2017, Proceedings of the National Academy of Sciences.

[12]  Steven M. Tommasini,et al.  Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. , 2017, Cell systems.

[13]  O. Gavrilova,et al.  Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary β-Cell Dysfunction to Progressive Depletion of β-Cell Mass and Diabetes* , 2017, The Journal of Biological Chemistry.

[14]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[15]  O. Gavrilova,et al.  Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary (cid:2) -Cell Dysfunction to Progressive Depletion of (cid:2) -Cell Mass and Diabetes * , 2017 .

[16]  M. McCarthy,et al.  Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants , 2016, Diabetes.

[17]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[18]  R. Cox,et al.  Increased Expression of the Diabetes Gene SOX4 Reduces Insulin Secretion by Impaired Fusion Pore Expansion , 2016, Diabetes.

[19]  Daniel Marbach,et al.  Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics , 2016, PLoS Comput. Biol..

[20]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[21]  Mark I. McCarthy,et al.  Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors , 2015, PLoS genetics.

[22]  Christian Gieger,et al.  Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci , 2016 .

[23]  R. McPherson,et al.  Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals , 2015, Diabetologia.

[24]  Amy C. Arnold,et al.  Defective Wnt Signaling: A Potential Contributor to Cardiometabolic Disease? , 2015, Diabetes.

[25]  Fei Gao,et al.  An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins , 2014, Nature Communications.

[26]  A. Gloyn,et al.  The pancreatic β cell: recent insights from human genetics , 2014, Trends in Endocrinology & Metabolism.

[27]  Søren Brunak,et al.  Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics , 2014, Nature Methods.

[28]  Judy H. Cho,et al.  Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. , 2014, Human molecular genetics.

[29]  Inês Barroso,et al.  Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity , 2014, Diabetes.

[30]  John P. Overington,et al.  An atlas of genetic influences on human blood metabolites , 2014, Nature Genetics.

[31]  Kari Stefansson,et al.  Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes , 2014, Nature Genetics.

[32]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.

[33]  M. Gobbi,et al.  Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment , 2014, Nature Genetics.

[34]  Jason Flannick,et al.  Evaluating empirical bounds on complex disease genetic architecture , 2013, Nature Genetics.

[35]  Alexey I. Nesvizhskii,et al.  Reconstructing targetable pathways in lung cancer by integrating diverse omics data , 2013, Nature Communications.

[36]  G. Bano Glucose homeostasis, obesity and diabetes. , 2013, Best practice & research. Clinical obstetrics & gynaecology.

[37]  Tim Nolan,et al.  International Diabetes Federation. , 2013, Diabetes research and clinical practice.

[38]  M. Piske,et al.  14-3-3 proteins are essential signalling hubs for beta cell survival , 2013, Diabetologia.

[39]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[40]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[41]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[42]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[43]  Ernest Fraenkel,et al.  SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways , 2012, Nucleic Acids Res..

[44]  P. Casey,et al.  Deletion of GαZ Protein Protects against Diet-induced Glucose Intolerance via Expansion of β-Cell Mass* , 2012, The Journal of Biological Chemistry.

[45]  S. Young,et al.  Reciprocal Metabolic Perturbations in the Adipose Tissue and Liver of GPIHBP1-Deficient Mice , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[46]  Cheng-Yan Kao,et al.  Construction and analysis of the protein-protein interaction networks for schizophrenia, bipolar disorder, and major depression , 2011, BMC Bioinformatics.

[47]  M. Daly,et al.  Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.

[48]  Mark I McCarthy,et al.  Genomics, type 2 diabetes, and obesity. , 2010, The New England journal of medicine.

[49]  Yau-Huei Wei,et al.  Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes , 2010, Annals of the New York Academy of Sciences.

[50]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[51]  Sian Ellard,et al.  Homozygous Mutations in NEUROD1 Are Responsible for a Novel Syndrome of Permanent Neonatal Diabetes and Neurological Abnormalities , 2010, Diabetes.

[52]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[53]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[54]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[55]  B. Bergman,et al.  Effects of fasting on insulin action and glucose kinetics in lean and obese men and women. , 2007, American journal of physiology. Endocrinology and metabolism.

[56]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[57]  C. Burant,et al.  Islet hypertrophy following pancreatic disruption of Smad4 signaling. , 2006, American journal of physiology. Endocrinology and metabolism.

[58]  Susan T. Dumais,et al.  Latent semantic analysis , 2005, Scholarpedia.

[59]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .