Preparation and characterization of multiwalled carbon nanotube dispersions in polypropylene: Melt mixing versus solid‐state shear pulverization

Dispersions of multiwalled carbon nanotubes (MWNT) in polypropylene (PP) were prepared via conventional melt batch mixing and solid-state shear pulverization. The properties and structure of each system were assessed via linear viscoelasticity, electrical conductivity, PP crystallization kinetics, dynamic mechanical analysis, scanning electron microscopy, and small angle X-ray scattering. Increasing either the duration or the intensity of melt mixing leads to higher degrees of dispersion of MWNT in PP, although at the cost of substantial melt degradation of PP for long mixing times. Samples prepared by pulverization exhibit faster crystallization kinetics and higher mechanical stiffness than the melt blended samples, but in contrast show no measurable low frequency elastic plateau in melt rheology, and lower electrical conductivity than melt-mixed samples. X-ray scattering demonstrates that neither sample has uniform dispersion down to the single MWNT level. The results illustrate that subtle differences in the size and distribution of nanotube clusters lead to differences in the nanotube networks with strong impact on bulk properties. The results also highlight distinctions between conductive networks and load transfer networks and demonstrate that a complete and comparative picture of dispersion cannot be determined by simple indirect property measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1426–1436, 2009

[1]  Alan J. Hurd,et al.  Scattering from fractals , 1987 .

[2]  J. Torkelson,et al.  Novel Strategy for Polymer Blend Compatibilization: Solid-State Shear Pulverization , 2000 .

[3]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[4]  R. Krishnamoorti,et al.  Rheology of polymer layered silicate nanocomposites , 2001 .

[5]  K. Seefeldt,et al.  Rheology of Polypropylene/Clay Hybrid Materials , 2001 .

[6]  Min Xiao,et al.  Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique , 2001 .

[7]  S. Carr,et al.  Trace levels of mechanochemical effects in pulverized polyolefins , 2001 .

[8]  Wengui Weng,et al.  Preparation of polystyrene–graphite conducting nanocomposites via intercalation polymerization , 2001 .

[9]  G. Vigier,et al.  Clay-reinforced polyamide : Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae , 2001 .

[10]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[11]  T. Chou,et al.  Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization , 2002 .

[12]  J. Torkelson,et al.  Stabilization of dispersed phase to static coarsening: Polymer blend compatibilization via solid-state shear pulverization , 2002 .

[13]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[14]  T. Kashiwagi,et al.  Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites , 2002 .

[15]  J. Fischer,et al.  Coagulation method for preparing single‐walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability , 2003 .

[16]  John M. Torkelson,et al.  Sub-micron dispersed-phase particle size in polymer blends: overcoming the Taylor limit via solid-state shear pulverization , 2003 .

[17]  S. Park,et al.  Synthesis and Dispersion Characteristics of Multi‐Walled Carbon Nanotube Composites with Poly(methyl methacrylate) Prepared by In‐Situ Bulk Polymerization , 2003 .

[18]  Robert H. Hauge,et al.  Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite , 2003 .

[19]  D. P. Anderson,et al.  Morphology of dispersed carbon single-walled nanotubes , 2003 .

[20]  R. Andrews,et al.  Carbon nanotube polymer composites , 2004 .

[21]  Jack F Douglas,et al.  Flow-induced properties of nanotube-filled polymer materials , 2004, Nature materials.

[22]  H. Choi,et al.  Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Composites , 2004 .

[23]  Wei Zhou,et al.  Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity , 2004 .

[24]  Arjun G. Yodh,et al.  Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks , 2004 .

[25]  M. Abdel-Goad,et al.  Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites , 2005 .

[26]  M. Maugey,et al.  An Experimental Approach to the Percolation of Sticky Nanotubes , 2005, Science.

[27]  S. Blundell,et al.  Surface dynamics of a thin polystyrene film probed by low-energy muons , 2005 .

[28]  James M Tour,et al.  Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering , 2005, Nanotechnology.

[29]  J. M. Kikkawa,et al.  Very Low Conductivity Threshold in Bulk Isotropic Single‐Walled Carbon Nanotube–Epoxy Composites , 2005 .

[30]  T. Kashiwagi,et al.  Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration * , 2005 .

[31]  L. Brinson,et al.  Functionalized SWNT/polymer nanocomposites for dramatic property improvement , 2005 .

[32]  R. Krishnamoorti,et al.  Non-isothermal crystallization of in situ polymerized poly(ε-caprolactone) functionalized-SWNT nanocomposites , 2005 .

[33]  A. Nogales,et al.  Small-angle X-ray scattering of single-wall carbon nanotubes dispersed in molten poly(ethylene terephthalate) , 2006 .

[34]  P. Poulin,et al.  Phase behavior of nanotube suspensions: from attraction induced percolation to liquid crystalline phases , 2006 .

[35]  J. Coleman,et al.  Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)‐Based Composites by the Incorporation of Poly(methyl methacrylate)‐Functionalized Nanotubes , 2006 .

[36]  Guangjun Hu,et al.  Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes , 2006 .

[37]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[38]  S. Kim,et al.  Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6‐naphthalate) nanocomposites , 2006 .

[39]  L. Drzal,et al.  Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets , 2007 .

[40]  J. E. Mark,et al.  Preparation and Rheological Characterization of Polymer Nanocomposites Based on Expanded Graphite , 2007 .

[41]  G. Brennan,et al.  Thermosetting Polyurethane Multiwalled Carbon Nanotube Composites , 2007 .

[42]  Qing Wang,et al.  Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites , 2007 .

[43]  J. Torkelson,et al.  Dispersion and Major Property Enhancements in Polymer/Multiwall Carbon Nanotube Nanocomposites via Solid-State Shear Pulverization Followed by Melt Mixing , 2008 .

[44]  Rodney S. Ruoff,et al.  Polymer−Graphite Nanocomposites:  Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization , 2008 .

[45]  K. Winey,et al.  Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes , 2008 .

[46]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.