Poisson's ratios of auxetic and other technological materials

Poisson's ratio, the relation between lateral contraction of a thin, linearly elastic rod when subjected to a longitudinal extension, has a long and interesting history. For isotropic bodies, it can theoretically range from +1/2 to -1; the experimental gamut for anisotropics is even larger. The ratio is positive for all combinations of directions in most crystals. But as far back as the 1800s, Voigt and others found that negative values were encountered for some materials, a property now called auxeticity. Here we examine this property from the point of view of crystal stability and compute extrema of the ratio for various interesting and technologically important materials. Potential applications of the auxetic property are mentioned.

[1]  D. M. Barnett,et al.  Negative Poisson’s Ratios in Anisotropic Linear Elastic Media , 2005 .

[2]  F. Milstein,et al.  Existence of a negative Poisson ratio in fcc crystals , 1979 .

[3]  J. Rychlewski,et al.  On Hooke's law☆ , 1984 .

[4]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[5]  William Thomson,et al.  I. Elements of a mathematical theory of elasticity , 1857, Proceedings of the Royal Society of London.

[6]  R. D. Mindlin Stress functions for a Cosserat continuum , 1965 .

[7]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[8]  A. Ballato,et al.  Poisson's ratio for tetragonal, hexagonal, and cubic crystals , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Kenneth E. Evans,et al.  Tensile network microstructures exhibiting negative Poisson's ratios , 1989 .

[10]  Y. Li The anisotropic behavior of Poisson's ratio, Young's modulus, and shear modulus in hexagonal materials , 1976 .

[11]  H. Welker Discovery and development of III-V compounds , 1976, IEEE Transactions on Electron Devices.

[12]  W. A. Smith,et al.  Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio , 1991, IEEE 1991 Ultrasonics Symposium,.

[13]  Raymond D. Mindlin,et al.  On the equations of elastic materials with micro-structure , 1965 .

[14]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[15]  Larry D. Peel,et al.  Exploration of high and negative Poisson's ratio elastomer‐matrix laminates , 2007 .

[16]  A. Ballato Alteration of Poisson's ratio in high coupling piezoelectrics , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[17]  M. Rovati Directions of auxeticity for monoclinic crystals , 2004 .

[18]  A. Beltzer,et al.  Reexamination of dynamic problems of elasticity for negative Poisson’s ratio , 1988 .

[19]  Michael Hayes,et al.  Poisson's Ratio for Orthorhombic Materials , 1998 .

[20]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[21]  A. Ballato P3L-1 Elastic Moduli, and their Temperature Coefficients, of Piezoelectric and Nonpiezoelectric Polycrystalline Aggregates , 2006, 2006 IEEE Ultrasonics Symposium.

[22]  X. Markenscoff,et al.  High−frequency vibrations of crystal plates under initial stresses , 1975 .

[23]  Yang Mingbo,et al.  Advances in Negative Poisson's Ratio Materials , 2003 .

[24]  Tungyang Chen,et al.  Poisson's ratio for anisotropic elastic materials can have no bounds , 2005 .

[25]  G Sines,et al.  The anisotropy of Young's modulus, shear modulus and Poisson's ratio in cubic materials , 1971 .

[26]  Andrew N. Norris,et al.  Poisson's ratio in cubic materials , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[28]  A. Ballato Poisson's ratios of technological materials , 2009, 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum.

[29]  C. Bert Influence of couple stresses on stress concentrations , 1963 .

[30]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[31]  A. Ballato Voigt-Reuss-Hill Moduli for Ferroelectric Aggregates , 2006, 2006 15th ieee international symposium on the applications of ferroelectrics.

[32]  B. M. Lempriere Poisson's Ratio in Orthotropic Materials , 1968 .

[33]  Arthur Ballato,et al.  Doubly Rotated Thickness Mode Plate Vibrators , 1977 .

[34]  A. Ballato Poisson's Ratios in High Coupling Ferroelectric Ceramics , 2012 .

[35]  D. Gunton,et al.  Stability limits on the Poisson ratio: application to a martensitic transformation , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[37]  M. Poisson Mémoire sur l'équilibre et le mouvement des corps élastiques , 1828 .

[38]  Zhong‐Ming Li,et al.  Review on auxetic materials , 2004 .