Design Improvement of a Polymer-Based Tendon-Driven Wearable Robotic Hand (Exo-Glove Poly)

This paper presents the design improvement of a polymer-based tendon-driven wearable robotic hand, Exo-Glove Poly. The wearability and adaptiveness are the key points to design the Exo-Glove Poly in considering the cases of practical use. Thus, magnets are embedded into the wearable part for easy donning and doffing. Also, the tendon length adjustment mechanism is designed to adapt different hand sizes by changing length of the tendons. Through these improvements, it is increased the change to practical use of the Exo-Glove Poly.

[1]  Brian Byunghyun Kang,et al.  Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System , 2015, IEEE Robotics & Automation Magazine.

[2]  Yasuhisa Hasegawa,et al.  Wearable handling support system for paralyzed patient , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Hyung‐Soon Park,et al.  Development of a Biomimetic Hand Exotendon Device (BiomHED) for Restoration of Functional Hand Movement Post-Stroke , 2014, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[4]  Brian Byunghyun Kang,et al.  Development of a polymer-based tendon-driven wearable robotic hand , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Andreas Wege,et al.  Development and control of a hand exoskeleton for rehabilitation of hand injuries , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Francesco Giovacchini,et al.  Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation , 2012, IEEE/ASME Transactions on Mechatronics.

[7]  Kevin C. Galloway,et al.  Soft robotic glove for hand rehabilitation and task specific training , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Massimo Bergamasco,et al.  Mechanical design of a novel Hand Exoskeleton for accurate force displaying , 2009, 2009 IEEE International Conference on Robotics and Automation.

[9]  Hong Kai Yap,et al.  A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).