Carbonate record of temporal change in oxygen fugacity and gaseous species in asteroid Ryugu

[1]  F. Terui,et al.  Early fluid activity on Ryugu inferred by isotopic analyses of carbonates and magnetite , 2023, Nature Astronomy.

[2]  A. Davis,et al.  Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis , 2022, Nature Astronomy.

[3]  A. Davis,et al.  Oxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2 , 2022, Science advances.

[4]  A. Davis,et al.  Ryugu's nucleosynthetic heritage from the outskirts of the Solar System. , 2022, Science advances.

[5]  A. Davis,et al.  The Solar System calcium isotopic composition inferred from Ryugu samples , 2022, Geochemical Perspectives Letters.

[6]  F. Terui,et al.  On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective , 2022, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[7]  A. Davis,et al.  Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites , 2022, Science.

[8]  L. Nittler,et al.  Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth , 2022, Science.

[9]  A. Yamaguchi,et al.  Carbon isotopic evolution of aqueous fluids in CM chondrites: Clues from in-situ isotope analyses within calcite grains in Yamato-791198 , 2020 .

[10]  J. Eiler,et al.  Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases , 2020, Proceedings of the National Academy of Sciences.

[11]  E. Hauri,et al.  Calcite and dolomite formation in the CM parent body: Insight from in situ C and O isotope analyses , 2019, Geochimica et Cosmochimica Acta.

[12]  P. Hoppe,et al.  Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites , 2019, Nature Astronomy.

[13]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[14]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[15]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[16]  J. Lyons,et al.  A light carbon isotope composition for the Sun , 2018, Nature Communications.

[17]  D. Bekaert,et al.  Origin and abundance of water in carbonaceous asteroids , 2018 .

[18]  J. Villeneuve,et al.  Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites , 2017 .

[19]  Martin Rubin,et al.  Isotopic composition of CO 2 in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS , 2017 .

[20]  A. Gurenko,et al.  Oxygen isotope constraints on the alteration temperatures of CM chondrites , 2017 .

[21]  J. Elsila,et al.  Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites , 2016 .

[22]  H. Kuninaka,et al.  Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3 , 2014 .

[23]  R. Bowden,et al.  Carbonate abundances and isotopic compositions in chondrites , 2013 .

[24]  Y. Sano,et al.  Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite , 2013 .

[25]  M. Cotte,et al.  The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy , 2012 .

[26]  Yong‐Fei Zheng On the theoretical calculations of oxygen isotope fractionation factors for carbonate-water systems , 2011 .

[27]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[28]  J. Licandro,et al.  Spitzer observations of spacecraft target 162173 (1999 JU3) , 2009, 0908.0796.

[29]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[30]  J. Valley,et al.  Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe , 2009 .

[31]  J. Eiler,et al.  Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .

[32]  S. Itoh,et al.  Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.

[33]  J. Lyons,et al.  CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.

[34]  Hisayoshi Yurimoto,et al.  Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.

[35]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[36]  K. Keil,et al.  Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .

[37]  H. McSween,et al.  Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .

[38]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[39]  P. Richet,et al.  A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules , 1977 .

[40]  C. Romanek,et al.  Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .