Carbonate record of temporal change in oxygen fugacity and gaseous species in asteroid Ryugu
暂无分享,去创建一个
Richard J. Walker | A. Davis | P. Hoppe | L. Nittler | F. Terui | Y. Tsuda | M. Bizzarro | R. Carlson | M. Abe | M. Yoshikawa | S. Nakazawa | T. Saiki | T. Okada | H. Yabuta | Sei‐ichiro Watanabe | S. Tachibana | Tomoki Nakamura | T. Yada | A. Nakato | R. Okazaki | K. Sakamoto | S. Itoh | T. Noguchi | Y. Terada | I. Nakai | Hiroharu Yui | A. Bouvier | Y. Amelin | T. Kleine | F. Moynier | T. Usui | M. Wadhwa | H. Naraoka | T. Iizuka | S. Russell | H. Yurimoto | M. Nishimura | T. Ireland | K. Nagashima | N. Kita | A. Pack | M. Chaussidon | N. Dauphas | K. McKeegan | K. Terada | L. Qin | H. Hidaka | K. Bajo | M. Schönbächler | A. Zhang | E. Young | A. Krot | G. Huss | Satoshi Tanaka | T. Yokoyama | K. Kitajima | L. Piani | N. Sakamoto | Changkun Park | N. Kawasaki | W. Fujiya | Ming-Chang Liu | Haolan Tang | J. Aléon | A. Nguyen | S. Amari | Yoshinari Abe | S. Yoneda | T. Di Rocco | R. Fukai | K. Yamashita | L. Tafla | S. Wada | Akiko Miyazaki | K. Yogata | Y. Hibiya | C. M. O’D. Alexander | Y. Masuda | I. Gautam | K. Ichida | S. Komatani | Mayu Morita | K. Motomura | M. Onose | B.-G. Choi | M. Haba | Hisashi Homma | Q. Yin | A. Ishikawa | T. Okada | M. Morita | Ming‐Chang Liu | S. Tanaka
[1] F. Terui,et al. Early fluid activity on Ryugu inferred by isotopic analyses of carbonates and magnetite , 2023, Nature Astronomy.
[2] A. Davis,et al. Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis , 2022, Nature Astronomy.
[3] A. Davis,et al. Oxygen isotopes of anhydrous primary minerals show kinship between asteroid Ryugu and comet 81P/Wild2 , 2022, Science advances.
[4] A. Davis,et al. Ryugu's nucleosynthetic heritage from the outskirts of the Solar System. , 2022, Science advances.
[5] A. Davis,et al. The Solar System calcium isotopic composition inferred from Ryugu samples , 2022, Geochemical Perspectives Letters.
[6] F. Terui,et al. On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective , 2022, Proceedings of the Japan Academy. Series B, Physical and biological sciences.
[7] A. Davis,et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites , 2022, Science.
[8] L. Nittler,et al. Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth , 2022, Science.
[9] A. Yamaguchi,et al. Carbon isotopic evolution of aqueous fluids in CM chondrites: Clues from in-situ isotope analyses within calcite grains in Yamato-791198 , 2020 .
[10] J. Eiler,et al. Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases , 2020, Proceedings of the National Academy of Sciences.
[11] E. Hauri,et al. Calcite and dolomite formation in the CM parent body: Insight from in situ C and O isotope analyses , 2019, Geochimica et Cosmochimica Acta.
[12] P. Hoppe,et al. Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites , 2019, Nature Astronomy.
[13] R. Jaumann,et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.
[14] R. Jaumann,et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.
[15] M. Yamada,et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.
[16] J. Lyons,et al. A light carbon isotope composition for the Sun , 2018, Nature Communications.
[17] D. Bekaert,et al. Origin and abundance of water in carbonaceous asteroids , 2018 .
[18] J. Villeneuve,et al. Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites , 2017 .
[19] Martin Rubin,et al. Isotopic composition of CO 2 in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS , 2017 .
[20] A. Gurenko,et al. Oxygen isotope constraints on the alteration temperatures of CM chondrites , 2017 .
[21] J. Elsila,et al. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites , 2016 .
[22] H. Kuninaka,et al. Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3 , 2014 .
[23] R. Bowden,et al. Carbonate abundances and isotopic compositions in chondrites , 2013 .
[24] Y. Sano,et al. Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite , 2013 .
[25] M. Cotte,et al. The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy , 2012 .
[26] Yong‐Fei Zheng. On the theoretical calculations of oxygen isotope fractionation factors for carbonate-water systems , 2011 .
[27] Steven B. Charnley,et al. The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .
[28] J. Licandro,et al. Spitzer observations of spacecraft target 162173 (1999 JU3) , 2009, 0908.0796.
[29] E. Dishoeck,et al. The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.
[30] J. Valley,et al. Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe , 2009 .
[31] J. Eiler,et al. Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .
[32] S. Itoh,et al. Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.
[33] J. Lyons,et al. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula , 2005, Nature.
[34] Hisayoshi Yurimoto,et al. Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System , 2004, Science.
[35] Richard P. Binzel,et al. Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .
[36] K. Keil,et al. Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .
[37] H. McSween,et al. Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .
[38] M. Zolensky,et al. Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .
[39] P. Richet,et al. A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules , 1977 .
[40] C. Romanek,et al. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .