Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.

Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.

[1]  Helmut Geistlinger,et al.  Electron theory of thin-film gas sensors , 1993 .

[2]  René Lalauze,et al.  Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors , 2003 .

[3]  P. Mériaudeau,et al.  Paramagnetic oxygen species adsorbed on reduced SnO2 , 1971 .

[4]  W. Göpel Reactions of oxygen with ZnO–101̄0‐surfaces , 1978 .

[5]  I. Stensgaard,et al.  Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface , 2004, Science.

[6]  Y. Yamaguchi,et al.  Density functional theory calculations for the interaction of oxygen with reduced M/SnO2 (M=Pd, Pt) surfaces , 2003 .

[7]  J. Yates,et al.  TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer , 2005 .

[8]  Udo Weimar,et al.  An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3 , 2004 .

[9]  Norberto Chiodini,et al.  Thermally induced segregation of SnO2 nanoclusters in Sn-doped silica glasses from oversaturated Sn-doped silica xerogels , 2001 .

[10]  A. A. Davydov,et al.  Molecular Spectroscopy of Oxide Catalyst Surfaces , 2003 .

[11]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[12]  David E. Williams,et al.  Tin dioxide gas sensors. Part 1.—Aspects of the surface chemistry revealed by electrical conductance variations , 1987 .

[13]  C. Cramer,et al.  How useful are vibrational frequencies of isotopomeric O2 fragments for assessing local symmetry? Some simple systems and the vexing case of a galactose oxidase model , 2005, JBIC Journal of Biological Inorganic Chemistry.

[14]  G. Heiland,et al.  Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen , 1954 .

[15]  Y. Yamaguchi,et al.  The Interaction of Oxygen with Reduced SnO2 and Ti/SnO2 (110) Surfaces: A Density Functional Theory Study , 2002 .

[16]  P. Fecher,et al.  Die Darstellung von 1.3-Dunethyl-6-hydroxy-dihychothymin durch photochemische Wasser-Addition an 1.3-Dimethyl-thymin+ / Preparation of 1,3-Dimethyl-6-hydroxy-dihydrothymine by Photochemical Addition of Water to 1,3-Dimethyl-thymine+ , 1981 .

[17]  R. Franchy,et al.  TWO CHEMISORBED SPECIES OF O2 ON AG(110) , 1998 .

[18]  D. Murphy,et al.  An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces , 2003 .

[19]  E. Bontempi,et al.  Nanostructured Pt-doped tin oxide films: Sol-gel preparation, spectroscopic and electrical characterization , 2001 .

[20]  János Mizsei,et al.  Experimental studies of O2–SnO2 surface interaction using powder, thick films and monocrystalline thin films , 2005 .

[21]  Tapio T. Rantala,et al.  Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface , 2001 .

[22]  M. Gillan,et al.  First-principles study of the interaction of oxygen with the SnO2(110) surface , 2001 .

[23]  M. Paganini,et al.  O- radical ions on MgO: a tool for a structural description of the surface , 2002 .

[24]  D. Narducci,et al.  Paramagnetic point defects in SnO2 and their reactivity with the surrounding gases. Part 1.—Interaction of oxygen lattice centres with vapour-phase H2O, air, inert and combustible gases, as revealed by electron paramagnetic resonance spectroscopy , 1993 .

[25]  N. Bârsan,et al.  In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 , 1998 .

[26]  J. Valentine Dioxygen ligand in mononuclear Group VIII transition metal complexes , 1973 .

[27]  Y. Yamaguchi,et al.  Stability of oxygen anions and hydrogen abstraction from methane on reduced SnO2 (110) surface , 1998 .

[28]  Meilin Liu,et al.  Surface states in template synthesized tin oxide nanoparticles , 2004 .

[29]  V. Lantto,et al.  Electrical studies on the reactions of CO with different oxygen species on SnO2 surfaces , 1987 .

[30]  J. Lunsford ESR of Adsorbed Oxygen Species , 1974 .

[31]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[32]  A. Rothschild,et al.  Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors , 2003 .

[33]  G. Tournier,et al.  Influence of oxygen concentration in the carrier gas on the response of tin dioxide sensor under hydrogen and methane , 1999 .

[34]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[35]  S. Lenaerts,et al.  In-situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen oxygen mixtures at temperatures up to 720-k , 1994 .

[36]  K. Hauffe Anwendung der Halbleiter‐Theorie auf Probleme der heterogenen Katalyse , 1955 .

[37]  L. Vaska Dioxygen-metal complexes: toward a unified view , 1976 .

[38]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[39]  G. Martinelli,et al.  Electrical and spectroscopic characterization of SnO2 and Pd-SnO2 thick films studied as CO gas sensors , 1998 .

[40]  Philip G. Harrison,et al.  Tin oxide surfaces. Part 20.—Electrical properties of tin(IV) oxide gel: nature of the surface species controlling the electrical conductance in air as a function of temperature , 1989 .

[41]  G. Ghiotti,et al.  Infrared study of surface chemistry and electronic effects of different atmospheres on SnO2 , 1989 .

[42]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[43]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[44]  A. Rothschild,et al.  Quantitative evaluation of chemisorption processes on semiconductors , 2002 .

[45]  Yoichi Yamaguchi,et al.  Chemisorbed Oxygen Species over the (110) Face of SnO2 , 2003 .

[46]  W. Gőpel Chemisorption and charge transfer at ionic semiconductor surfaces: Implications in designing gas sensors , 1985 .

[47]  D. Delafosse,et al.  Propriétés superficielles du dioxyde d'étain selon son mode de préparation , 1976 .

[48]  H. Kawazoe,et al.  Change in the Oxidation State of the Adsorbed Oxygen Equilibrated at 25°C on ZnO Surface during Room Temperature Annealing after Rapid Quenching , 1999 .

[49]  S. R. Morrison,et al.  The Chemical Physics of Surfaces , 1977 .

[50]  Noboru Yamazoe,et al.  Interactions of tin oxide surface with O2, H2O AND H2 , 1979 .

[51]  U. Diebold,et al.  Surface oxygen chemistry of a gas-sensing material: SnO2(101) , 2004 .

[52]  Christopher A. Reed,et al.  Synthetic Heme Dioxygen Complexes , 1994 .

[53]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[54]  P. B. Weisz,et al.  Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis , 1953 .

[55]  T. Doll,et al.  A rate equation approach to the gas sensitivity of thin film metal oxide materials , 2005 .

[56]  C. Peden,et al.  Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites , 1998 .

[57]  Sheikh A. Akbar,et al.  Ceramics for chemical sensing , 2003 .

[58]  B. Flietner,et al.  Dipole- and charge transfer contributions to the work function change of semiconducting thin films: experiment and theory , 1996 .

[59]  J. P. Marton,et al.  Physical Properties of SnO2 Materials II . Electrical Properties , 1976 .

[60]  Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device , 2005, cond-mat/0506621.

[61]  N. Yamazoe,et al.  Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides , 1978 .

[62]  P. Harrison,et al.  Tin oxide surfaces. Part 4.—Infrared study of the adsorption of oxygen and carbon monoxide + oxygen mixtures on tin(IV) oxide, and the adsorption of carbon dioxide on ammonia-pretreated tin(IV) oxide , 1978 .

[63]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[64]  V. Kovalchuk,et al.  Probing Defect Sites on the CeO2 Surface with Dioxygen , 2004 .

[65]  S. Lenaerts,et al.  FT-IR characterization of tin dioxide gas sensor materials under working conditions , 1995 .

[66]  B. Na,et al.  Studies of gas adsorption on ZnO using ESR, FTIR spectroscopy, and MHE (microwave Hall Effect) measurements , 1993 .

[67]  C. Peden,et al.  Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels , 1999 .

[68]  J. Fierro,et al.  Metal oxides : chemistry and applications , 2005 .

[69]  Kenichi Tanaka,et al.  Adsorbed oxygen species on zinc oxide in the dark and under illumination , 1972 .

[70]  Norberto Chiodini,et al.  Mechanisms responsible for the ultraviolet photosensitivity of SnO 2 -doped silica , 2001 .

[71]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[72]  J. Szuber,et al.  The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen , 2000 .

[73]  W. Göpel,et al.  Intrinsic defects of Ti O 2 (110): Interaction with chemisorbed O 2 , H 2 , CO, and C O 2 , 1983 .

[74]  M. Scheffler,et al.  Determination of deep donor binding energies from their g values , 1982 .

[75]  Shih-Chia Chang Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements , 1980 .

[76]  M. Paganini,et al.  Continuous wave electron paramagnetic resonance investigation of the hyperfine structure of 17O2− adsorbed on the MgO surface , 2002 .

[77]  G. Pacchioni Oxygen vacancy: the invisible agent on oxide surfaces. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[78]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[79]  A. Volodin,et al.  ESR spectra of O2− on SnO2. effect of adsorbed CO on the conditions of stabilization of O2− , 1981 .

[80]  F. Gaillard,et al.  An intermittent temperature-programmed desorption method for studying kinetics of desorption from heterogeneous surfaces , 2004 .

[81]  D. Barreca,et al.  Can electron paramagnetic resonance measurements predict the electrical sensitivity of SnO2-based film? , 2002 .

[82]  E. Longo,et al.  Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO2(1 1 0) surfaces and the interaction with O2 , 2002 .

[83]  David E. Williams,et al.  Dissociation of O2 on the reduced SnO2 (110) surface , 2000 .

[84]  J. Lunsford,et al.  Formation of O− in ZnO from the dissociation of adsorbed N2O , 1974 .

[85]  Rotraut Merkle,et al.  Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure , 2005 .

[86]  A. Davydov Molecular Spectroscopy of Oxide Catalyst Surfaces: Davydov/Molecular , 2003 .

[87]  T. Lawson,et al.  OXYGEN SPECIES ADSORBED ON OXIDES. 1. FORMATION AND REACTIVITY OF (O⁻)/sub s/ ON MgO. , 1972 .

[88]  Yasutaka Takahashi,et al.  Analysis of the Change in the Carrier Concentration of SnO2 Thin Film Gas Sensor. , 1994 .

[89]  G. Thornton,et al.  Interaction of O2 with SnO2(110)1 × 1 and 4 × 1 , 1992 .

[90]  Alan F. Williams,et al.  The Structure and Reactivity of Dioxygen Complexes of the Transition Metals , 1983 .

[91]  Y. Yamaguchi,et al.  A density functional theory study of the interaction of oxygen with a reduced SnO2 (110) surface , 2000 .

[92]  Karin Fink,et al.  Zinc Oxide Nanoparticles with Defects , 2005 .

[93]  Giuliano Martinelli,et al.  Characterization of SnO2-based gas sensors. A spectroscopic and electrical study of thick films from commercial and laboratory-prepared samples , 1997 .

[94]  A. Meijerink,et al.  Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles , 2000 .

[95]  T. Rantala,et al.  Computational study of charge accumulation at SnO2(110) surface , 2005 .

[96]  A. Davydov,et al.  IR spectra of oxygen adsorbed on SnO2 , 1975 .

[97]  Shogo Nakamura,et al.  ESR and Electric Conductance Studies of the Fine-Powdered SnO2 , 1975 .