A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method

[1]  A. Skidmore,et al.  Tropical mangrove species discrimination using hyperspectral data: A laboratory study , 2005 .

[2]  G. V. G. Baranoski,et al.  A practical approach for estimating the red edge position of plant leaf reflectance , 2005 .

[3]  J. Luvall,et al.  Evaluating Corn Nitrogen Variability via Remote-Sensed Data , 2004 .

[4]  J. Clevers,et al.  Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data , 2004 .

[5]  R. Jongschaap,et al.  Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status , 2004 .

[6]  J. J. Colls,et al.  Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks , 2004 .

[7]  Huang Wenjiang,et al.  Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance , 2004 .

[8]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[9]  S. I. Pogosyan,et al.  Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments , 2003, Russian Journal of Plant Physiology.

[10]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[11]  Ruiliang Pu,et al.  Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  A. Skidmore,et al.  Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry , 2003 .

[13]  S. Dobrowski,et al.  Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects , 2003 .

[14]  P. Gong,et al.  Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia , 2002 .

[15]  D. Lamb,et al.  Estimating leaf nitrogen concentration in ryegrass ( Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations , 2002 .

[16]  A. K. Skidmore,et al.  Derivation of the red edge index using the MERIS standard band setting , 2002 .

[17]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[18]  G. Carter,et al.  Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. , 2001, American journal of botany.

[19]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[20]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[21]  H. R. Duke,et al.  Remote Sensing of Plant Nitrogen Status in Corn , 1996 .

[22]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[23]  W. R. Windham,et al.  Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. , 1995, Tree physiology.

[24]  Claus Buschmann,et al.  In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation , 1993 .

[25]  F. Boochs,et al.  Shape of the red edge as vitality indicator for plants , 1990 .

[26]  John R. Miller,et al.  Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model , 1990 .

[27]  G. Guyot,et al.  Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux , 1988 .

[28]  G. Bonham-Carter Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data , 1988 .

[29]  William J. Collins,et al.  Confirmation of the airborne biogeophysical mineral exploration technique using laboratory methods , 1983 .

[30]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[31]  V. J. G. Houba,et al.  A novel digestion technique for multi-element plant analyses , 1983 .

[32]  James Barber,et al.  Effects of heavy metals on the absorbance and reflectance spectra of plants , 1980 .

[33]  Jean. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1964, Analytical chemistry.

[34]  S. Stafford,et al.  Multivariate Statistics for Wildlife and Ecology Research , 2000, Springer New York.

[35]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[36]  J. Dungan,et al.  The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration , 1991 .

[37]  James H. Everitt,et al.  Leaf reflectance-nitrogen-chlorophyll relations in buffelgrass , 1985 .

[38]  W. Collins,et al.  Remote sensing of crop type and maturity , 1978 .

[39]  H. Gausman,et al.  Reflectance of leaf components , 1977 .

[40]  J. R. Thomas,et al.  Estimating Nitrogen Content of Sweet Pepper Leaves by Reflectance Measurements1 , 1972 .

[41]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .