A Method for q-Calculus

Abstract We present a notation for q-calculus, which leads to a new method for computations and classifications of q-special functions. With this notation many formulas of q-calculus become very natural, and the q-analogues of many orthogonal polynomials and functions assume a very pleasant form reminding directly of their classical counterparts. The first main topic of the method is the tilde operator, which is an involution operating on the parameters in a q-hypergeometric series. The second topic is the q-addition, which consists of the Ward–AlSalam q-addition invented by Ward 1936 [102, p. 256] and Al-Salam 1959 [5, p. 240], and the Hahn q-addition. In contrast to the the Ward–AlSalam q-addition, the Hahn q-addition, compare [57, p. 362] is neither commutative nor associative, but on the other hand, it can be written as a finite product. We will use the generating function technique by Rainville [76] to prove recurrences for q-Laguerre polynomials, which are q-analogues of results in [76]. We will also find q-analogues of Carlitz’ [26] operator expression for Laguerre polynomials. The notation for Cigler’s [37] operational calculus will be used when needed. As an application, q-analogues of bilinear generating formulas for Laguerre polynomials of Chatterjea [33, p. 57], [32, p. 88] will be found.

[1]  L. Carlitz A note on the Laguerre polynomials. , 1960 .

[2]  G. Bhatnagar,et al.  Cn and Dn Very-Well-Poised 10φ9 Transformations , 1998 .

[3]  Ervin Feldheim Relations entre les polynomes de Jacobi, Laguerre et Hermite , 1942 .

[4]  P. W. Karlsson,et al.  Multiple Gaussian hypergeometric series , 1985 .

[5]  New Approaches to Certain Identities Involving Differential Operators , 1994 .

[6]  F. Whipple Well-Poised Series and Other Generalized Hypergeometrtc Series , 1926 .

[7]  G. Rota,et al.  On the Foundations of Combinatorial Theory IV Finite Vector Spaces and Eulerian Generating Functions , 1970 .

[8]  F. Whipple A Group of Generalized Hypergeometric Series: Relations Between 120 Allied Series of the Type F(a,b,ce,f) , 1925 .

[9]  B. Kupershmidt q-Newton Binomial: From Euler To Gauss , 2000 .

[10]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[11]  S. K. Chatterjea,et al.  A generalization of Laguerre polynomials , 1963 .

[12]  A. Verma,et al.  Generalized basic hypergeometric series with unconnected bases (ii) , 1967 .

[13]  H. Srivastava,et al.  Some Families of Multilinear q-Generating Functions and Combinatorial q-Series Identities , 1995 .

[14]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators. II. The Identity P$^{n}$ = Q$^{m}$ , 1931 .

[15]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[16]  R. Jagannathan,et al.  Group theoretical basis for the terminating 3F2(1) series , 1992 .

[17]  Waleed A. Al-Salam,et al.  q‐Bernoulli numbers and polynomials , 1958 .

[18]  Transformation formulas for double hypergeometric series related to 9-j coefficients and their basic analogs , 2001 .

[19]  J. Cigler Operatormethoden fürq-Identitäten II:q-Laguerre-Polynome , 1981 .

[20]  A. Verma,et al.  Generalized basic hypergeometric series with unconnected bases , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  R. Askey,et al.  MULTIPLE GAUSSIAN HYPERGEOMETRIC SERIES (Ellis Horwood Series Mathematics and Its Applications) , 1986 .

[22]  Harold Exton,et al.  q-hypergeometric functions and applications , 1983 .

[23]  Vladimir Retakh,et al.  General hypergeometric systems of equations and series of hypergeometric type , 1992 .

[24]  Vladimir V. Sokolov,et al.  Generalized Operator Yang-Baxter Equations, Integrable ODEs and Nonassociative Algebras , 2000 .

[25]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[26]  Thomas Ernst,et al.  The history of q-calculus and a new method , 2000 .

[27]  Won Sang Chung,et al.  Newq-derivative andq-logarithm , 1994 .

[28]  Transformation formula for a double Clausenian hypergeometric series, its q -analogue, and its invariance group , 2002 .

[29]  A. M. Chak,et al.  A class of polynomials and a generalization of Stirling numbers , 1956 .

[30]  J. V. Jeugt,et al.  Invariance groups of transformations of basic hypergeometric series , 1999 .

[31]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[32]  F. H. Jackson XI.—On q-Functions and a certain Difference Operator , 1909, Transactions of the Royal Society of Edinburgh.

[33]  F. H. Jackson q-Difference Equations , 1910 .

[34]  Jet Wimp Basic Hypergeometric Series (George Gasper and Mizan Rahman) , 1991, SIAM Rev..

[35]  Mumtaz Ahmad Khan BASIC DOUBLE HYPERGEOMETRIC FUNCTIONS (II) , 1944 .

[36]  F. J. W. Whipple,et al.  On Well-Poised Series, Generalized Hypergeometric Series having Parameters in Pairs, each Pair with the Same Sum , 1926 .

[37]  George E. Andrews,et al.  Applications of Basic Hypergeometric Functions , 1974 .

[38]  Morgan Ward,et al.  A Calculus of Sequences , 1936 .

[39]  Rene F. Swarttouw The contiguous function relations for the basic hypergeometric series , 1990 .

[40]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1928 .

[41]  Generalized basic hypergeometric functions and the q-analogues of 3-j and 6-j coefficients , 1991 .

[42]  W. Rudin Real and complex analysis , 1968 .

[43]  Kung-Wei Yang Matrix q-hypergeometric series , 1995, Discret. Math..

[44]  W. N. Bailey On the product of two Laguerre polynomials , 1939 .

[45]  W. A. Al-Salam Operational representations for the Laguerre and other polynomials , 1964 .

[46]  Waleed A. Al-Salam,et al.  A fractional Leibniz $q$-formula , 1975, Pacific Journal of Mathematics.

[47]  Daniel S Moak,et al.  The q-analogue of the Laguerre polynomials , 1981 .

[48]  A. Ronveaux,et al.  On the linearization problem involving Pochhammer symbols and their q -analogues , 1999 .

[49]  Niels Nielsen,et al.  Traité élémentaire des nombres de Bernoulli , 1924 .

[50]  George E. Andrews,et al.  Congruences for the q-secant Numbers , 1980, Eur. J. Comb..

[51]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1923 .

[52]  Ranjan Roy,et al.  Binomial identities and hypergeometric series , 1986 .

[53]  Meinhard E. Mayer,et al.  Group theory and physics , 1994 .

[54]  F. H. Jackson A Basic-sine and cosine with symbolical solutions of certain differential equations , 1903 .

[55]  Almost poised basic hypergeometric series , 1987 .

[56]  F. J. W. Whipple,et al.  Some Transformations of Generalized Hypergeometric Series , 1927 .

[57]  A. C. Dixon Summation of a certain Series , 1902 .

[58]  E. Heine Über die Reihe 1+ . (Aus einem Schreiben an Lejeune Dirichlet). , 1846 .

[59]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[60]  Joseph Needham,et al.  Science and Civilization in China , 1955 .

[61]  Ervin Feldheim Contributi alla teoria delle funzioni ipergeometriche di più variabili , 1943 .

[62]  J. Thomae Ueber die Functionen, welche durch Reihen von der Form dargestellt werden . , 1879 .

[63]  I. Gessel,et al.  Divisibility properties of the $q$-tangent numbers , 1978 .

[64]  W. N. Bailey An Identify Involving Heine's Basic Hyper Geometric Series , 1929 .

[65]  T. Ernst $q$-Generating functions for one and two variables , 2005 .

[66]  B. Kupershmidt q-Newton binomial: from Euler to Gauss , 2000, math/0004187.

[67]  W. N. Bailey Transformations of Generalized Hypergeometric Series , 1929 .

[68]  Group theoretical basis of some identities for the generalized hypergeometric series , 1987 .

[69]  T. Ernst A new method and its application to generalized q-Bessel polynomials , 2001 .

[70]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[71]  L. J. Rogers On a Three‐fold Symmetry in the Elements of Heine's Series , 1892 .

[72]  J. Dougall,et al.  On Vandermonde's Theorem, and some more general Expansions , 1906 .

[73]  Wolfgang Hahn,et al.  Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation , 1949 .