A Method for q-Calculus
暂无分享,去创建一个
[1] L. Carlitz. A note on the Laguerre polynomials. , 1960 .
[2] G. Bhatnagar,et al. Cn and Dn Very-Well-Poised 10φ9 Transformations , 1998 .
[3] Ervin Feldheim. Relations entre les polynomes de Jacobi, Laguerre et Hermite , 1942 .
[4] P. W. Karlsson,et al. Multiple Gaussian hypergeometric series , 1985 .
[5] New Approaches to Certain Identities Involving Differential Operators , 1994 .
[6] F. Whipple. Well-Poised Series and Other Generalized Hypergeometrtc Series , 1926 .
[7] G. Rota,et al. On the Foundations of Combinatorial Theory IV Finite Vector Spaces and Eulerian Generating Functions , 1970 .
[8] F. Whipple. A Group of Generalized Hypergeometric Series: Relations Between 120 Allied Series of the Type F(a,b,ce,f) , 1925 .
[9] B. Kupershmidt. q-Newton Binomial: From Euler To Gauss , 2000 .
[10] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[11] S. K. Chatterjea,et al. A generalization of Laguerre polynomials , 1963 .
[12] A. Verma,et al. Generalized basic hypergeometric series with unconnected bases (ii) , 1967 .
[13] H. Srivastava,et al. Some Families of Multilinear q-Generating Functions and Combinatorial q-Series Identities , 1995 .
[14] J. L. Burchnall,et al. Commutative Ordinary Differential Operators. II. The Identity P$^{n}$ = Q$^{m}$ , 1931 .
[15] R. A. Silverman,et al. Special functions and their applications , 1966 .
[16] R. Jagannathan,et al. Group theoretical basis for the terminating 3F2(1) series , 1992 .
[17] Waleed A. Al-Salam,et al. q‐Bernoulli numbers and polynomials , 1958 .
[18] Transformation formulas for double hypergeometric series related to 9-j coefficients and their basic analogs , 2001 .
[19] J. Cigler. Operatormethoden fürq-Identitäten II:q-Laguerre-Polynome , 1981 .
[20] A. Verma,et al. Generalized basic hypergeometric series with unconnected bases , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.
[21] R. Askey,et al. MULTIPLE GAUSSIAN HYPERGEOMETRIC SERIES (Ellis Horwood Series Mathematics and Its Applications) , 1986 .
[22] Harold Exton,et al. q-hypergeometric functions and applications , 1983 .
[23] Vladimir Retakh,et al. General hypergeometric systems of equations and series of hypergeometric type , 1992 .
[24] Vladimir V. Sokolov,et al. Generalized Operator Yang-Baxter Equations, Integrable ODEs and Nonassociative Algebras , 2000 .
[25] W. Rheinboldt,et al. Generalized hypergeometric functions , 1968 .
[26] Thomas Ernst,et al. The history of q-calculus and a new method , 2000 .
[27] Won Sang Chung,et al. Newq-derivative andq-logarithm , 1994 .
[28] Transformation formula for a double Clausenian hypergeometric series, its q -analogue, and its invariance group , 2002 .
[29] A. M. Chak,et al. A class of polynomials and a generalization of Stirling numbers , 1956 .
[30] J. V. Jeugt,et al. Invariance groups of transformations of basic hypergeometric series , 1999 .
[31] Rene F. Swarttouw,et al. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.
[32] F. H. Jackson. XI.—On q-Functions and a certain Difference Operator , 1909, Transactions of the Royal Society of Edinburgh.
[33] F. H. Jackson. q-Difference Equations , 1910 .
[34] Jet Wimp. Basic Hypergeometric Series (George Gasper and Mizan Rahman) , 1991, SIAM Rev..
[35] Mumtaz Ahmad Khan. BASIC DOUBLE HYPERGEOMETRIC FUNCTIONS (II) , 1944 .
[36] F. J. W. Whipple,et al. On Well-Poised Series, Generalized Hypergeometric Series having Parameters in Pairs, each Pair with the Same Sum , 1926 .
[37] George E. Andrews,et al. Applications of Basic Hypergeometric Functions , 1974 .
[38] Morgan Ward,et al. A Calculus of Sequences , 1936 .
[39] Rene F. Swarttouw. The contiguous function relations for the basic hypergeometric series , 1990 .
[40] J. L. Burchnall,et al. Commutative Ordinary Differential Operators , 1928 .
[41] Generalized basic hypergeometric functions and the q-analogues of 3-j and 6-j coefficients , 1991 .
[42] W. Rudin. Real and complex analysis , 1968 .
[43] Kung-Wei Yang. Matrix q-hypergeometric series , 1995, Discret. Math..
[44] W. N. Bailey. On the product of two Laguerre polynomials , 1939 .
[45] W. A. Al-Salam. Operational representations for the Laguerre and other polynomials , 1964 .
[46] Waleed A. Al-Salam,et al. A fractional Leibniz $q$-formula , 1975, Pacific Journal of Mathematics.
[47] Daniel S Moak,et al. The q-analogue of the Laguerre polynomials , 1981 .
[48] A. Ronveaux,et al. On the linearization problem involving Pochhammer symbols and their q -analogues , 1999 .
[49] Niels Nielsen,et al. Traité élémentaire des nombres de Bernoulli , 1924 .
[50] George E. Andrews,et al. Congruences for the q-secant Numbers , 1980, Eur. J. Comb..
[51] J. L. Burchnall,et al. Commutative Ordinary Differential Operators , 1923 .
[52] Ranjan Roy,et al. Binomial identities and hypergeometric series , 1986 .
[53] Meinhard E. Mayer,et al. Group theory and physics , 1994 .
[54] F. H. Jackson. A Basic-sine and cosine with symbolical solutions of certain differential equations , 1903 .
[55] Almost poised basic hypergeometric series , 1987 .
[56] F. J. W. Whipple,et al. Some Transformations of Generalized Hypergeometric Series , 1927 .
[57] A. C. Dixon. Summation of a certain Series , 1902 .
[58] E. Heine. Über die Reihe 1+ . (Aus einem Schreiben an Lejeune Dirichlet). , 1846 .
[59] D. Varshalovich,et al. Quantum Theory of Angular Momentum , 1988 .
[60] Joseph Needham,et al. Science and Civilization in China , 1955 .
[61] Ervin Feldheim. Contributi alla teoria delle funzioni ipergeometriche di più variabili , 1943 .
[62] J. Thomae. Ueber die Functionen, welche durch Reihen von der Form dargestellt werden . , 1879 .
[63] I. Gessel,et al. Divisibility properties of the $q$-tangent numbers , 1978 .
[64] W. N. Bailey. An Identify Involving Heine's Basic Hyper Geometric Series , 1929 .
[65] T. Ernst. $q$-Generating functions for one and two variables , 2005 .
[66] B. Kupershmidt. q-Newton binomial: from Euler to Gauss , 2000, math/0004187.
[67] W. N. Bailey. Transformations of Generalized Hypergeometric Series , 1929 .
[68] Group theoretical basis of some identities for the generalized hypergeometric series , 1987 .
[69] T. Ernst. A new method and its application to generalized q-Bessel polynomials , 2001 .
[70] Jean-Baptiste Lully,et al. The collected works , 1996 .
[71] L. J. Rogers. On a Three‐fold Symmetry in the Elements of Heine's Series , 1892 .
[72] J. Dougall,et al. On Vandermonde's Theorem, and some more general Expansions , 1906 .
[73] Wolfgang Hahn,et al. Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation , 1949 .