Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

Reactions of Ni−n(n=3–10), Pd−n(n=3–8), and Pt−n(n=3–7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

[1]  Per E. M. Siegbahn,et al.  Theoretical ionization energies and geometries for nickel (Nin 4 .ltoreq. n .ltoreq. 9) , 1992 .

[2]  A. Luntz,et al.  Sticking and scattering in the molecular chemisorption regime: CO on Pt(111) , 1989 .

[3]  L. Woeste,et al.  Bonding capabilities of nickel cluster ions: synthetic chemistry in a molecular beam , 1987 .

[4]  P. Hay,et al.  An effective core potential study of the mono‐ and tetracarbonyls of Ni, Pd, and Pt , 1985 .

[5]  M. Kokura,et al.  Reactions of palldium(II) compounds with carbon monoxide in alcohol/amine systems : a new route to palladium(O) carbonyl and carboalkoxy-palladium(II) complexes , 1973 .

[6]  E. K. Parks,et al.  The structure of nickel clusters , 1991 .

[7]  M. Irion,et al.  FTMS Studies of Sputtered Metal Cluster Ions (III): The Chemistry of Ni+n, Co+n, V+n, Ag+n, Au+n and Fe+n with C2H4, C6H6 or NH3 , 1990 .

[8]  M. Manassero,et al.  Synthesis and characterization of new iron-palladium and iron-platinum carbonyl anionic clusters , 1980 .

[9]  B. Teo New topological electron-counting theory , 1984 .

[10]  Kent M. Ervin,et al.  Chemisorption of carbon monoxide on platinum cluster anions , 1993 .

[11]  D. Ellis,et al.  Electronic structure, binding energies, and interaction potentials of transition metal clusters , 1991 .

[12]  A. Harms,et al.  Metal cluster cation reactions: Carbon monoxide association to Cu+n ions , 1990 .

[13]  S. Owen Electron counting in clusters: A view of the concepts , 1988 .

[14]  Timothy A. Su,et al.  Parametrization of the ion–polar molecule collision rate constant by trajectory calculations , 1982 .

[15]  Thomas Engel,et al.  Desorption kinetics of CO from epitaxial Pd films on W(110) in the low coverage limit , 1993 .

[16]  E. K. Parks,et al.  Temperature dependence of the reaction of nickel clusters with deuterium , 1993 .

[17]  G. Longoni,et al.  Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n = .apprx.10,6,5,4,3,2,1). A new series of inorganic oligomers , 1976 .

[18]  L. F. Dahl,et al.  Stereochemistry of the [Ni9(CO)18]2− dianion: a comparative structural-bonding analysis of the different nine-metal cores of stacked metal triangles in the [M9(CO)18]2− (M=Ni, Pt) and [Rh9(CO)19]3− anions , 1986 .

[19]  J. Michl,et al.  Dehydrogenation and cracking of n-butane with gas-phase nickel (Nin+), palladium (Pdn+), and platinum (Ptn+), cluster ions , 1987 .

[20]  Stephen J. Riley,et al.  Near‐threshold photoionization of nickel clusters: Ionization potentials for Ni3 to Ni90 , 1990 .

[21]  K. C. Reichmann,et al.  CO chemisorption on free gas phase metal clusters , 1988 .

[22]  D. Underwood,et al.  Triangular platinum and nickel clusters: the "tinker-toy" construction of chains with high nuclearity , 1985 .

[23]  G. Longoni,et al.  Synthesis and structural characterization of platinum carbonyl cluster dianions bis,tris,tetrakis, or pentakis(tri-.mu.2-carbonyl-tricarbonyltriplatinum)(2-). New series of inorganic oligomers , 1974 .

[24]  M. Irion,et al.  FTMS Studies of Sputtered Metal Cluster Ions: (II) The Chemistry of Nin+ with C2H4 and CH4 at Long Timescales , 1989 .

[25]  R. Smalley,et al.  Surface reactions of metal clusters. II. Reactivity surveys with D2, N2, and CO , 1985 .

[26]  E. K. Parks,et al.  Chemical probes of metal cluster ionization potentials , 1990 .

[27]  A. Kaldor,et al.  Methane activation on unsupported platinum clusters , 1990 .

[28]  Joe Ho,et al.  Electronic and vibrational structure of transition metal trimers: Photoelectron spectra of Ni−3, Pd−3, and Pt−3 , 1988 .

[29]  A. Depristo,et al.  The structure of NiN and PdN clusters: 4≤N≤23 , 1992 .

[30]  Dennis R. Salahub,et al.  Density Functional Study of CO Chemisorption on Model Clusters of Rh and Pd: A Comparative Analysis of the Site Selection , 1992 .

[31]  J. Koutecký,et al.  Theoretical aspects of metal atom clusters , 1986 .

[32]  G. C. Nieman,et al.  The kinetics of reactions of nickel clusters with hydrogen and deuterium , 1987 .

[33]  M. Kappes Experimental studies of gas-phase main-group metal clusters , 1988 .

[34]  A. Kaldor,et al.  Hydrogen chemisorption on gas-phase transition-metal clusters , 1990 .

[35]  P. Fayet,et al.  Palladium clusters: H2 , O2 , N2 , CH4 , C04 , C2H4 , and C2H, reactivity and O 2 saturation studies , 1990 .

[36]  M. Irion,et al.  FTMS studies of sputtered metal cluster ions (IV): size-selective effects in the chemistry of Fen+ with NH3 and Pdn+ with D2 or C2H4 , 1991 .

[37]  K. P. Kerns,et al.  Chemistry and kinetics of size‐selected cobalt cluster cations at thermal energies. I. Reactions with CO , 1992 .

[38]  Ernst Peter Kundig,et al.  Intermediate Binary Carbonyls of Palladium Pd(CO)n where n = 1–3; Preparation, Identification, and Diffusion Kinetics by Matrix Isolation Infrared Spectroscopy , 1972 .

[39]  G. Longoni,et al.  Carbonylnickelates. 1. Synthesis and chemical characterization of the dodecacarbonylpentanickelate(2-) and dodecacarbonylhexanickelate(2-) dianions , 1976 .

[40]  D. Salahub,et al.  Chemisorption of CO on Pd(100): An lcgto‐lsd cluster study , 1986 .

[41]  P. Armentrout,et al.  Collision‐induced dissociation of Ni+n (n=2–18) with Xe: Bond energies, geometrical structures, and dissociation pathways , 1992 .

[42]  H. Steinrück,et al.  Precursors and trapping in the molecular chemisorption of CO on Ni(100) , 1987 .