On the use of structure functions to study blazar variability: caveats and problems

The extensive use of the structure function (SF) in the field of blazar variability across the electromagnetic spectrum suggests that characteristics time-scales are embedded in the light curves of these objects. We argue that for blazar variability studies, the SF results are sometimes erroneously interpreted leading to misconceptions about the actual source properties. Based on extensive simulations, we caution that spurious breaks will appear in the SFs of almost all light curves, even though these light curves may contain no intrinsic characteristic time-scales, i.e. having a featureless underlying power spectral density (PSD). We show that the time-scales of the spurious SF breaks depend mainly on the length of the artificial data set and also on the character of the variability i.e. the shape of the PSD. The SF is often invoked in the framework of shot-noise models to determine the temporal properties of individual shots. We caution that although the SF may be fitted to infer the shot parameters, the resultant shot-noise model is usually inconsistent with the observed PSD. As any model should fit the data in both the time and the frequency domain, the shot-noise model, in these particular cases, cannot be valid. Moreover, we show that the lack of statistical independence between adjacent SF points, in the standard SF formulation, means that it is not possible to perform robust statistical model fitting following the commonly used least-squares fitting methodology. The latter yields uncertainties in the fitting parameters (i.e. slopes, breaks) that are far too small with respect to their true statistical scatter. Finally, it is also commonly thought that SFs are immune to the sampling problems, such as data gaps, which affects the estimators of the PSDs. However, we show that SFs are also troubled by gaps which can induce artefacts.

[1]  M. F. Physik,et al.  Discovery of multiple Lorentzian components in the X-ray timing properties of the Narrow Line Seyfert 1 Ark 564 , 2007, 0709.0262.

[2]  R. Strom,et al.  Testing the inverse-Compton catastrophe scenario in the intra-day variable blazar S5 0716+71, III. Rapid and correlated flux density variability from radio to sub-mm bands , 2008, 0809.2227.

[3]  P. Uttley,et al.  Active galactic nuclei as scaled-up Galactic black holes , 2006, Nature.

[4]  Heidelberg,et al.  Testing the inverse-Compton catastrophe scenario in the intra-day variable blazar S5 0716+71 II. A search for intra-day variability at millimetre wavelengths with the IRAM 30 m telescope , 2006, astro-ph/0606049.

[5]  P. Uttley,et al.  X-ray variability of NGC 3227 and 5506 and the nature of active galactic nucleus ‘states’ , 2005 .

[6]  T. Hovatta,et al.  24 year monitoring of extragalactic sources at 22 and 37 GHz , 2005 .

[7]  E. al.,et al.  Multi-wavelength observations of PKS 2155-304 with HESS , 2005, astro-ph/0506593.

[8]  E. al.,et al.  Observations of Mkn 421 in 2004 with HESS at large zenith angles , 2005, astro-ph/0506319.

[9]  M. Goad,et al.  MCG–6-30-15: long time-scale X-ray variability, black hole mass and active galactic nuclei high states , 2005, astro-ph/0503100.

[10]  S. Vaughan,et al.  A simple test for periodic signals in red noise , 2004, astro-ph/0412697.

[11]  Pune,et al.  Intranight optical variability of BL Lacs, radio‐quiet quasars and radio‐loud quasars , 2004, astro-ph/0410156.

[12]  I. Papadakis,et al.  Combined long and short timescale X-ray variability of NGC 4051 with RXTE and XMM-Newton , 2003, astro-ph/0311220.

[13]  L. C. Woods Physics of plasmas , 2003 .

[14]  W. Rhode,et al.  TeV $\gamma$-ray light curve and energy spectrum of Mkn 421 during its 2001 flare as measured with HEGRA CT1 , 2003 .

[15]  University of Leicester,et al.  On characterizing the variability properties of X-ray light curves from active galaxies , 2003 .

[16]  T. L. Rhodes,et al.  Structure function analysis of long-range correlations in plasma turbulence , 2003 .

[17]  J. Tonry,et al.  The extragalactic distance scale , 2003, astro-ph/0304427.

[18]  P. Uttley,et al.  X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies , 2003, astro-ph/0303273.

[19]  Ukraine,et al.  Variability of accretion flow in the core of the Seyfert galaxy NGC 4151 , 2001, astro-ph/0110708.

[20]  J. Kataoka,et al.  Implications of Variability Patterns Observed in TeV Blazars on the Structure of the Inner Jet , 2002, astro-ph/0210214.

[21]  Chiharu Tanihata,et al.  RXTE observations of 3C 273 between 1996 and 2000: variability time-scale and jet power , 2002, astro-ph/0207003.

[22]  E. Pian,et al.  Four Years of Monitoring Blazar PKS 2155–304 with BeppoSAX: Probing the Dynamics of the Jet , 2002, astro-ph/0202378.

[23]  P. Uttley,et al.  Measuring the broad-band power spectra of active galactic nuclei with RXTE , 2002, astro-ph/0201134.

[24]  C. Urry,et al.  Variability Timescales of TeV Blazars Observed in the ASCA Continuous Long-Look X-Ray Monitoring , 2001, astro-ph/0108310.

[25]  B. Peterson,et al.  Characteristic Ultraviolet/Optical Timescales in Active Galactic Nuclei , 2001 .

[26]  N. Kawai,et al.  Characteristic X-Ray Variability of TeV Blazars: Probing the Link between the Jet and the Central Engine , 2001, astro-ph/0105022.

[27]  D. Lazzati,et al.  Internal shocks in the jets of radio-loud quasars , 2001, astro-ph/0103424.

[28]  M. Sikora,et al.  Modeling the Production of Flares in Gamma-Ray Quasars , 2001, astro-ph/0102091.

[29]  G. Branduardi-Raymont,et al.  XMM-Newton observations of Markarian 421 , 2000, astro-ph/0011193.

[30]  M. Trifoglio,et al.  XMM-Newton monitoring of X-ray variability in the quasar PKS 0558-504 , 2000, astro-ph/0011159.

[31]  K. Makishima,et al.  Long-term variability of the low-luminosity active galactic nucleus of M81 , 2000, astro-ph/0010018.

[32]  H. Krawczynski,et al.  Complex Spectral Variability from Intensive Multiwavelength Monitoring of Markarian 421 in 1998 , 2000, astro-ph/0008505.

[33]  A. Quirrenbach,et al.  Intraday variability in compact extragalactic radio sources - I. VLA observations , 2000 .

[34]  Tagliaferri,et al.  Simultaneous X-Ray and TeV Observations of a Rapid Flare from Markarian 421 , 1999, The Astrophysical journal.

[35]  G. E. Latimer,et al.  Centimeter-Wavelength Total Flux and Linear Polarization Properties of Radio-loud BL Lacertae Objects , 1998, astro-ph/9810485.

[36]  E. Castillo,et al.  Applications to Time Series , 1999 .

[37]  T. Subba Rao,et al.  Applications of Time Series Analysis in Astronomy and Meteorology , 1998 .

[38]  T. Weekes,et al.  Multiwavelength Observations of a Flare from Markarian 501 , 1997, astro-ph/9707179.

[39]  Mario Livio,et al.  The Extragalactic Distance Scale , 1997 .

[40]  L. Burderi,et al.  Harmonic Coupling of the Red Noise in X-Ray Pulsars , 1997 .

[41]  M. Irwin,et al.  The statistics of microlensing light curves — II. Temporal analysis , 1996 .

[42]  E. Valtaoja,et al.  Structure Function Analysis of High Radio Frequency Variability in the Metsaehovi Monitoring Sample of Active Galactic Nuclei , 1993 .

[43]  I. Papadakis,et al.  Improved methods for power spectrum modelling of red noise , 1993 .

[44]  A. D. Nair,et al.  The longer optical time scales of a large sample of quasars , 1993 .

[45]  Hideyo Kunieda,et al.  The X-ray variability of NGC 6814 : power spectrum , 1992 .

[46]  J. Bregman,et al.  Optical and radio variability in blazars , 1992 .

[47]  M. F. Aller,et al.  The University of Michigan Radio Astronomy Data Base. I. Structure Function Analysis and the Relation between BL Lacertae Objects and Quasi-stellar Objects , 1992 .

[48]  A. Szymkowiak,et al.  Shot model parameters for Cygnus X-1 through phase portrait fitting , 1991 .

[49]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[50]  J. Scargle Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .

[51]  G. Neugebauer,et al.  The near-infrared variability of a sample of optically selected quasars , 1989 .

[52]  C. Hummel,et al.  Rapid variability of extragalactic radio sources , 1987, Nature.

[53]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[54]  P. J. Huggins,et al.  Multifrequency observation of the optically violent variable quasar 3C 446 , 1988 .

[55]  F. J. Josties,et al.  Daily Observations of Compact Extragalactic Radio Sources at 2695 and 8085 MHz, 1979--1985 , 1987 .

[56]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[57]  R. Narayan,et al.  Refractive interstellar scintillation in 1741-038 , 1986 .

[58]  J. Cordes,et al.  JPL pulsar timing observations. III. Pulsar rotation fluctuations. , 1985 .

[59]  D. S. Heeschen,et al.  Flicker of extragalactic radio sources at two frequencies , 1984 .

[60]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[61]  W. A. Coles,et al.  Simultaneous measurements of angular scattering and intensity scintillation in the atmosphere , 1982 .

[62]  J. Rutman Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress , 1978, Proceedings of the IEEE.

[63]  F. V. Bunkin,et al.  Laser irradiance propagation in turbulent media , 1975, Proceedings of the IEEE.

[64]  Journal of the Optical Society of America , 1950, Nature.