Multivariate control chart based on PCA mix for variable and attribute quality characteristics

ABSTRACT Two types of control charts exist based on different quality characteristics: variable and attribute. These characteristics are commonly monitored using separate procedures. Only a few studies focused on the utilization of control charts to monitor a process with mixed characteristics. This study develops a new concept of the control chart based on a Principal Component Analysis (PCA) Mix, that is a PCA method that can jointly handle continuous and categorical data. The Kernel Density Estimation (KDE) method is used to estimate the control limit. Through simulation studies, the performance of the proposed chart is evaluated using the Average Run Length (ARL). control limits obtained from KDE produce a stable ARL0 at ~ 370 for For the shifted process, the proposed chart demonstrates excellent performance for an appropriate number of principal components used. Applications of the simulated process and real cases show that the proposed chart is sensitive to monitoring the shifted process.

[1]  Aggeliki Sgora,et al.  The application of multivariate statistical process monitoring in non-industrial processes , 2018 .

[2]  Dedy Dwi Prastyo,et al.  T2 Control Chart based on Successive Difference Covariance Matrix for Intrusion Detection System , 2018, Journal of Physics: Conference Series.

[3]  Perfomance Fuzzy Multinomial Control Chart , 2018 .

[4]  Suhartono,et al.  Multioutput Least Square SVR Based Multivariate EWMA Control Chart , 2018, Journal of Physics: Conference Series.

[5]  Giovanni Celano,et al.  A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs , 2017, Int. J. Prod. Res..

[6]  John Yearwood,et al.  Exponentially weighted control charts to monitor multivariate process variability for high dimensions , 2017, Int. J. Prod. Res..

[7]  Chi-Hyuck Jun,et al.  A control chart for multivariate Poisson distribution using repetitive sampling , 2017 .

[8]  C. Jun,et al.  A mixed control chart adapted to the truncated life test based on the Weibull distribution , 2017 .

[9]  Chi-Hyuck Jun,et al.  Mixed Control Charts Using EWMA Statistics , 2016, IEEE Access.

[10]  Dedy Dwi Prastyo,et al.  T2 hotelling fuzzy and W2 control chart with application to wheat flour production process , 2016 .

[11]  Alireza Faraz,et al.  A statistically adaptive sampling policy to the Hotelling's T2 control chart: Markov chain approach , 2016 .

[12]  Purhadi,et al.  Fuzzy multinomial control chart and its application , 2016 .

[13]  Seyed Taghi Akhavan Niaki,et al.  A double-max MEWMA scheme for simultaneous monitoring and fault isolation of multivariate multistage auto-correlated processes based on novel reduced-dimension statistics , 2015 .

[14]  Muhammad Azam,et al.  A mixed control chart to monitor the process , 2015 .

[15]  Marie Chavent,et al.  Multivariate analysis of mixed data: The PCAmixdata R package , 2014 .

[16]  Moustafa Omar Ahmed Abu-Shawiesh,et al.  A Robust Bivariate Control Chart Alternative to the Hotelling's T2 Control Chart , 2014, Qual. Reliab. Eng. Int..

[17]  Shahryar Sorooshian,et al.  Fuzzy Approach to Statistical Control Charts , 2013, J. Appl. Math..

[18]  Z. Omar,et al.  Robust Hotelling Control Chart with Consistent Minimum Vector Variance , 2013 .

[19]  Shahryar Sorooshian,et al.  Basic Developments of Quality Characteristics Monitoring , 2013, J. Appl. Math..

[20]  Seoung Bum Kim,et al.  Principal component analysis-based control charts for multivariate nonnormal distributions , 2013, Expert Syst. Appl..

[21]  Majid Khedmati,et al.  Estimating the change point of the parameter vector of multivariate Poisson processes monitored by a multi-attribute T2 control chart , 2013 .

[22]  Dongdong Xiang,et al.  Mixed Variables-Attributes Test Plans for Single and Double Acceptance Sampling under Exponential Distribution , 2011 .

[23]  Seoung Bum Kim,et al.  Bootstrap-Based T 2 Multivariate Control Charts , 2011, Commun. Stat. Simul. Comput..

[24]  Long-Hui Chen,et al.  THE APPLICATION OF MULTINOMIAL CONTROL CHARTS FOR INSPECTION ERROR , 2011 .

[25]  John C. Young,et al.  Multivariate Statistical Process Control , 2013 .

[26]  Busaba Laungrungrong,et al.  Multivariate Charts for Multivariate Poisson-Distributed Data , 2010 .

[27]  J. Alfaro,et al.  A comparison of robust alternatives to Hotelling’s T 2 control chart , 2009 .

[28]  Paolo Carmelo Cozzucoli,et al.  Process Monitoring with Multivariate p-Control Chart , 2009 .

[29]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[30]  Mohamed Limam,et al.  Support vector regression based residual MCUSUM control chart for autocorrelated process , 2008, Appl. Math. Comput..

[31]  Arup Ranjan Mukhopadhyay,et al.  Multivariate attribute control chart using Mahalanobis D2 statistic , 2008 .

[32]  J. Chiu,et al.  Attribute Control Chart for Multivariate Poisson Distribution , 2007 .

[33]  Seyed Taghi Akhavan Niaki,et al.  Skewness Reduction Approach in Multi-Attribute Process Monitoring , 2007 .

[34]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[35]  Jamal Arkat,et al.  Artificial neural networks in applying MCUSUM residuals charts for AR(1) processes , 2007, Appl. Math. Comput..

[36]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[37]  Babak Abbasi,et al.  On the monitoring of multi-attributes high-quality production processes , 2007 .

[38]  Rassoul Noorossana,et al.  Effect of Autocorrelation on Performance of the MCUSUM Control Chart , 2006, Qual. Reliab. Eng. Int..

[39]  Theodora Kourti,et al.  Application of latent variable methods to process control and multivariate statistical process control in industry , 2005 .

[40]  Smiley W. Cheng,et al.  A New Multivariate Control Chart for Monitoring Both Location and Dispersion , 2005 .

[41]  J. Kopáček,et al.  Massive occurrence of heterotrophic filaments in acidified lakes: seasonal dynamics and composition. , 2003, FEMS microbiology ecology.

[42]  In-Beum Lee,et al.  Process monitoring based on probabilistic PCA , 2003 .

[43]  John C. Young,et al.  THE CONTROL CHART FOR INDIVIDUAL OBSERVATIONS FROM A MULTIVARIATE NON-NORMAL DISTRIBUTION , 2001 .

[44]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[45]  H. Kiers Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables , 1991 .

[46]  H. Kiers,et al.  Three-way methods for the analysis of qualitative and quantitative two-way data. , 1991 .

[47]  Principal Components Analysis on a mixture of quantitative and qualitative data based on generalized correlation coefficients , 1988 .

[48]  I. Jolliffe Principal Component Analysis , 2005 .

[49]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[50]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[51]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[52]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[53]  MULTIVARIATE QUALITY CONTROL : A HISTORICAL PERSPECTIVE , 2022 .