Non-stationary Geostatistical Modeling Based on Distance Weighted Statistics and Distributions

A common assumption in geostatistics is that the underlying joint distribution of possible values of a geological attribute at different locations is stationary within a homogeneous domain. This joint distribution is commonly modeled as multi-Gaussian, with correlations defined by a stationary covariance function. This results in attribute maps that fail to reproduce local changes in the mean, in the variance and, particularly, in the spatial continuity. The proposed alternative is to build local distributions, variograms, and correlograms. These are inferred by weighting the samples depending on their distance to selected locations. The local distributions are locally transformed into Gaussian distributions embedding information on the local histogram. The distance weighted experimental variograms and correlograms are able to adapt to local changes in the direction and range of spatial continuity. The automatically fitted local variogram models and the local Gaussian transformation parameters are used in spatial estimation algorithms assuming local stationarity. The resulting maps are rich in nonstationary spatial features. The proposed process implies a higher computational effort than traditional stationary techniques, but if data availability allows for a reliable inference of the local distributions and statistics, a higher accuracy of estimates can be achieved.

[1]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[2]  Andre G. Journel,et al.  Geostatistics: Models and tools for the earth sciences , 1986 .

[3]  Xavier Emery,et al.  Iterative algorithms for fitting a linear model of coregionalization , 2010, Comput. Geosci..

[4]  R. Webster,et al.  Sample adequately to estimate variograms of soil properties , 1992 .

[5]  R. M. Lark,et al.  Estimating Variogram Uncertainty , 2004 .

[6]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[7]  Katherine Campbell,et al.  Introduction to disjunctive kriging and non-linear geostatistics , 1994 .

[8]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[9]  I. Gibson Statistics and Data Analysis in Geology , 1976, Mineralogical Magazine.

[10]  Roussos Dimitrakopoulos,et al.  Generalized Sequential Gaussian Simulation on Group Size ν and Screen-Effect Approximations for Large Field Simulations , 2004 .

[11]  Clayton V. Deutsch,et al.  Geostatistical Reservoir Modeling , 2002 .

[12]  Graham J. Borradaile,et al.  Statistics of Earth Science Data: Their Distribution in Time, Space and Orientation , 2003 .

[13]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[14]  J. Jaime Gómez-Hernández,et al.  Theory and Practice of Sequential Simulation , 1994 .

[15]  Clayton V. Deutsch,et al.  Kriging in the Presence of Locally Varying Anisotropy Using Non-Euclidean Distances , 2009 .

[16]  T. C. Haas,et al.  Kriging and automated variogram modeling within a moving window , 1990 .

[17]  Francois Alabert,et al.  The practice of fast conditional simulations through the LU decomposition of the covariance matrix , 1987 .

[18]  H. Omre The Variogram and its Estimation , 1984 .

[19]  A. Stewart Fotheringham,et al.  Trends in quantitative methods I: stressing the local , 1997 .

[20]  Eulogio Padro-Igúzquiza VARFIT: a fortran-77 program for fitting variogram models by weighted least squares , 1999 .

[21]  Graham J. Borradaile,et al.  Statistics of Earth Science Data , 2003 .

[22]  L. Wasserman All of Nonparametric Statistics , 2005 .

[23]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[24]  Wenlong Xu,et al.  Conditional curvilinear stochastic simulation using pixel-based algorithms , 1996 .

[25]  G. Verly,et al.  The multigaussian approach and its applications to the estimation of local reserves , 1983 .

[26]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[27]  G. Korvin Axiomatic characterization of the general mixture rule , 1982 .

[28]  G. Bourgault Spatial declustering weights , 1997 .

[29]  S. Fotheringham,et al.  Geographically weighted summary statistics — aframework for localised exploratory data analysis , 2002 .

[30]  Donald E. Myers,et al.  To be or not to be... stationary? That is the question , 1989 .

[31]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[32]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[33]  C. Deutsch,et al.  Teacher's Aide Variogram Interpretation and Modeling , 2001 .

[34]  Martin Charlton,et al.  Moving window kriging with geographically weighted variograms , 2010 .