Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations

To improve energy harvesting performance, this paper investigates the resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations. Based on the method of multiple scales, the largest Lyapunov exponent which determines the stability of the trivial steady-state solutions is derived. The first kind modified Bessel function is utilized to derive the solutions of the responses of multistable energy harvesters. Then, the first-order and second-order nontrivial steady-state moments of multistable energy harvesters are considered. To explore the stochastic bifurcation phenomenon between the nontrivial and trivial steady-state solutions, the Fokker–Planck–Kolmogorov equation corresponding to the two-dimensional Ito stochastic differential equations is solved by using the finite difference method. In addition, the mechanism of the stochastic bifurcation of multistable energy harvesters is analyzed for revealing their unique dynamic response characteristics.

[1]  W. Marsden I and J , 2012 .

[2]  Wei Xu,et al.  Invariant Measures and Lyapunov Exponents for Stochastic Mathieu System , 2002 .

[3]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[4]  Dan Tan,et al.  Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation , 2017 .

[5]  Grzegorz Litak,et al.  Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms , 2019, Commun. Nonlinear Sci. Numer. Simul..

[6]  Weiqiu Zhu,et al.  Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations , 2004 .

[7]  Grzegorz Litak,et al.  Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system , 2016, Commun. Nonlinear Sci. Numer. Simul..

[8]  Pilkee Kim,et al.  Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester , 2015 .

[10]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[11]  Li Haitao,et al.  Dynamics and coherence resonance of tri-stable energy harvesting system , 2015 .

[12]  Xinlei Fu,et al.  A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers , 2019, Applied Physics Letters.

[13]  Grzegorz Litak,et al.  ENERGY HARVESTING IN A MAGNETOPIEZOELASTIC SYSTEM DRIVEN BY RANDOM EXCITATIONS WITH UNIFORM AND GAUSSIAN DISTRIBUTIONS , 2011 .

[14]  Mohammed F. Daqaq,et al.  Characterizing the effective bandwidth of tri-stable energy harvesters , 2016 .

[15]  Li-Qun Chen,et al.  Internal Resonance Energy Harvesting , 2015 .

[16]  G. Litak,et al.  Theoretical analysis of vibration energy harvesters with nonlinear damping and nonlinear stiffness , 2018, The European Physical Journal Plus.

[17]  Tsutomu Kaizuka,et al.  The benefits of an asymmetric tri-stable energy harvester in low-frequency rotational motion , 2019, Applied Physics Express.

[18]  D. Yurchenko,et al.  Harvest wind energy from a vibro-impact DEG embedded into a bluff body , 2019, Energy Conversion and Management.

[19]  Shengxi Zhou,et al.  Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting , 2018, Commun. Nonlinear Sci. Numer. Simul..

[20]  Li-Qun Chen,et al.  Stochastic averaging of energy harvesting systems , 2016 .

[21]  Yuan Wang,et al.  Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation , 2018, Applied Energy.

[22]  Mohammad-Reza Alam,et al.  Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting , 2017 .

[23]  Li-Qun Chen,et al.  An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise , 2014, Commun. Nonlinear Sci. Numer. Simul..

[24]  Gang Hu,et al.  Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference , 2019, Applied Physics Letters.

[25]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[26]  K. Liew,et al.  Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection , 2014 .

[27]  P Woafo,et al.  Analysis of tristable energy harvesting system having fractional order viscoelastic material. , 2015, Chaos.

[28]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[29]  Zhiyong Zhou,et al.  Improving efficiency of energy harvesting by a novel penta-stable configuration , 2017 .

[30]  Daniel J. Inman,et al.  Performance enhancement of nonlinear asymmetric bistable energy harvesting from harmonic, random and human motion excitations , 2018 .

[31]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[32]  Yanfei Jin,et al.  Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment , 2019, Nonlinear Dynamics.

[33]  Zhiyong Zhou,et al.  A broadband quad-stable energy harvester and its advantages over bi-stable harvester: Simulation and experiment verification , 2017 .

[34]  Y. K. Lin,et al.  Numerical path integration of a non-homogeneous Markov process , 2004 .

[35]  Mohammed F. Daqaq,et al.  Characterizing the effective bandwidth of tri-stable energy harvesters , 2017 .

[36]  Walter V. Wedig,et al.  Invariant measures and Lyapunov exponents for generalized parameter fluctuations , 1990 .

[37]  Yong Xu,et al.  Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise , 2017 .

[38]  Grzegorz Litak,et al.  Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit , 2019, Nonlinear Dynamics.

[39]  Rui-hong Li,et al.  On the dynamic response regimes of a viscoelastic isolation system integrated with a nonlinear energy sink , 2019, Commun. Nonlinear Sci. Numer. Simul..

[40]  P. Woafo,et al.  Dynamics and active control of motion of a particle in a φ6 potential with a parametric forcing , 2002 .

[41]  Mohammed F. Daqaq,et al.  On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations , 2012 .

[42]  Mohammed F. Daqaq,et al.  New Insights Into Utilizing Bistability for Energy Harvesting Under White Noise , 2015 .

[43]  Qifan He,et al.  Nonlinear Energy Harvesting Under White Noise , 2013 .

[44]  Yu-Kweng Michael Lin,et al.  Probabilistic Structural Dynamics: Advanced Theory and Applications , 1967 .

[45]  Ming Xu,et al.  Stochastic averaging for bistable vibration energy harvesting system , 2018, International Journal of Mechanical Sciences.

[46]  Xiaoling Jin,et al.  Stochastic averaging for nonlinear vibration energy harvesting system , 2014 .

[47]  Pengfei Xu,et al.  Stochastic resonance in an underdamped triple-well potential system , 2019, Appl. Math. Comput..

[48]  Xiaohui Yang,et al.  A Bonded-Type Piezoelectric Actuator Using the First and Second Bending Vibration Modes , 2016, IEEE Transactions on Industrial Electronics.