Computational Challenges in Systems Biology

Publisher Summary This chapter examines the challenges and some of the recent advances in computational systems biology. Research in computational systems biology has moved beyond interaction networks based simply on clustering and correlation. There are two paradigms in computational systems biology: the iterative cycle of biochemical model—mathematical model—computational model, and integration of novel data and legacy knowledge to develop context-specific biochemical, mathematical, and computational models. Challenges in building biochemical models include the complexity of proteomic states and interactions, integration of diverse data to infer biochemical interactions, and the temporal state of biochemical models. Challenges in building mathematical models include incorporating statistical/probabilistic information into analytical models, using qualitative constraints in mathematical models, and incomplete knowledge and coarse-graining. Challenges in computational modeling include the absence of knowledge about model parameters such as rate constants, local versus global concentrations of species and multiple scales of distance and time, and variation among different cell types and subpopulation variability, or variability among biological repeats. Advanced research in coarse graining will pave the way for progress in the development of multiscale multidomain modeling that can connect fundamental research in network biology to clinical research.

[1]  Edmund J. Crampin,et al.  Multi-scale modelling and the IUPS physiome project , 2004, Journal of Molecular Histology.

[2]  Prahlad T. Ram,et al.  G Protein Pathways , 2002, Science.

[3]  Sharat Jacob Vayttaden,et al.  Developing Complex Signaling Models Using GENESIS/Kinetikit , 2004, Science's STKE.

[4]  Peter J. Hunter,et al.  An Overview of CellML 1.1, a Biological Model Description Language , 2003, Simul..

[5]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[6]  Tommi S. Jaakkola,et al.  Bayesian Methods for Elucidating Genetic Regulatory Networks , 2002, IEEE Intell. Syst..

[7]  Eberhard O. Voit,et al.  Parameter estimation in modulated, unbranched reaction chains within biochemical systems , 2005, Comput. Biol. Chem..

[8]  E. Nestler Is there a common molecular pathway for addiction? , 2005, Nature Neuroscience.

[9]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[10]  X. Zhang,et al.  Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R Heinrich,et al.  Complex calcium oscillations and the role of mitochondria and cytosolic proteins. , 2000, Bio Systems.

[12]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[13]  Francis J Doyle,et al.  A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9 , 2006, Molecular systems biology.

[14]  D. Lauffenburger,et al.  Bioengineering models of cell signaling. , 2000, Annual review of biomedical engineering.

[15]  M. Davies,et al.  Systemic inflammatory response syndrome , 1997, The British journal of surgery.

[16]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[17]  Shankar Subramaniam,et al.  Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Prahlad T. Ram,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2002, Science.

[19]  L. Loew,et al.  An image-based model of calcium waves in differentiated neuroblastoma cells. , 2000, Biophysical journal.

[20]  Russell C. Eberhart,et al.  A hybrid self‐organizing maps and particle swarm optimization approach , 2004, Concurr. Pract. Exp..

[21]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[22]  Kao-Shing Hwang,et al.  CO-EVOLUTIONARY HYBRID DIFFERENTIAL EVOLUTION FOR MIXED-INTEGER OPTIMIZATION PROBLEMS , 2001 .

[23]  Kun Shen,et al.  Solving mixed integer nonlinear programming problems with line-up competition algorithm , 2004, Comput. Chem. Eng..

[24]  S. Subramaniam,et al.  Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks. , 2009, IET systems biology.

[25]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[26]  S. Schuster,et al.  Modelling of simple and complex calcium oscillations , 2002 .

[27]  Jennifer J. Linderman,et al.  Receptor Up-regulation, Internalization, and Interconverting Receptor States , 1996, The Journal of Biological Chemistry.

[28]  Ilya Shmulevich,et al.  Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks , 2006, Signal Process..

[29]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[30]  N. Price,et al.  Biochemical and statistical network models for systems biology. , 2007, Current opinion in biotechnology.

[31]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[32]  B. Palsson,et al.  k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. , 2005, Biophysical journal.

[33]  G. Stephanopoulos,et al.  Metabolic Engineering: Principles And Methodologies , 1998 .

[34]  A. V. Karnaukhov,et al.  Numerical Matrices Method for nonlinear system identification and description of dynamics of biochemical reaction networks. , 2007, Biophysical journal.

[35]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[36]  Hyung-Seok Choi,et al.  Reverse engineering of gene regulatory networks. , 2007, IET systems biology.

[37]  Eduardo D. Sontag,et al.  Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data , 2004, Bioinform..

[38]  M. P. Nash,et al.  Myocardial material parameter estimation , 2008, Biomechanics and modeling in mechanobiology.

[39]  A Joshi,et al.  Reducing complexity in metabolic networks: making metabolic meshes manageable. , 1987, Federation proceedings.

[40]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[41]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[42]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Eoin Fahy,et al.  Bioinformatics for lipidomics. , 2007, Methods in enzymology.

[44]  Alan Wells,et al.  EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation , 2007, Journal of Cell Science.

[45]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[47]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[48]  M. Berridge,et al.  Inositol trisphosphate and calcium oscillations. , 2007, Advances in second messenger and phosphoprotein research.

[49]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[50]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[51]  Francis J. Doyle,et al.  Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network , 2007, Cell.

[52]  Christodoulos A. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Comput. Chem. Eng..

[53]  R. Lanzara,et al.  Optimal Agonist/Antagonist Combinations Maintain Receptor Response by Preventing Rapid beta1-Adrenergic Receptor Desensitization , 2005 .

[54]  Vassilios Sotiropoulos,et al.  Multiscale Hy3S: Hybrid stochastic simulation for supercomputers , 2006, BMC Bioinformatics.

[55]  E D Gilles,et al.  Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. , 2004, Systems biology.

[56]  S Uckun Model-based reasoning in biomedicine. , 1992, Critical reviews in biomedical engineering.

[57]  Michael Hucka,et al.  A Correction to the Review Titled "Rules for Modeling Signal-Transduction Systems" by W. S. Hlavacek et al. , 2006, Science's STKE.

[58]  Nan Tang,et al.  Essential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics , 2006, Proceedings of the National Academy of Sciences.

[59]  Jared E. Toettcher,et al.  Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity , 2005, Cell.

[60]  Mano Ram Maurya,et al.  A kinetic model for calcium dynamics in RAW 264.7 cells: 2. Knockdown response and long-term response. , 2007, Biophysical journal.

[61]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[62]  Mano Ram Maurya,et al.  A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. , 2007, Biophysical journal.

[63]  Hiroaki Kitano,et al.  Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. , 2003, Omics : a journal of integrative biology.

[64]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[65]  Malcolm Rowland,et al.  Reducing Whole Body Physiologically Based Pharmacokinetic Models Using Global Sensitivity Analysis: Diazepam Case Study , 2006, Journal of Pharmacokinetics and Pharmacodynamics.

[66]  Jin Yang,et al.  Graph Theory for Rule-Based Modeling of Biochemical Networks , 2006, Trans. Comp. Sys. Biology.

[67]  Jens Timmer,et al.  Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge , 2007, BMC Systems Biology.

[68]  Feng-Sheng Wang,et al.  A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems☆ , 2004 .

[69]  Bernhard O. Palsson,et al.  Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli , 2007, PLoS Comput. Biol..

[70]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[71]  Xinglai Ji,et al.  libSRES: a C library for stochastic ranking evolution strategy for parameter estimation , 2006, Bioinform..

[72]  Tian Jin,et al.  Key Role of Local Regulation in Chemosensing Revealed by a New Molecular Interaction-Based Modeling Method , 2006, PLoS Comput. Biol..

[73]  G. Stephanopoulos,et al.  Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. , 2007, Metabolic engineering.

[74]  F J Doyle,et al.  Simultaneous high gain and wide dynamic range in a model of bacterial chemotaxis. , 2007, IET systems biology.

[75]  Z. N. Oltvai,et al.  Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Jamey D. Young,et al.  An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis , 2008, Biotechnology and bioengineering.

[77]  Bernhard O. Palsson,et al.  Estimation of the number of extreme pathways for metabolic networks , 2007, BMC Bioinformatics.

[78]  R Heinrich,et al.  Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations. , 2001, Biophysical chemistry.

[79]  D. Husmeier,et al.  Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge , 2007, Statistical applications in genetics and molecular biology.

[80]  Michel Bouvier,et al.  [To apprehend the complexity of living at the era of the << Omics >>]. , 2006, Medecine sciences : M/S.

[81]  O. O. Oyeleye,et al.  Qualitative simulation of chemical process systems: Steady‐state analysis , 1988 .

[82]  Venkat Venkatasubramanian,et al.  A systematic framework for the design of reduced-order models for signal transduction pathways from a control theoretic perspective , 2006, Comput. Chem. Eng..

[83]  J. Stelling,et al.  Mathematical modeling of complex regulatory networks , 2004, IEEE Transactions on NanoBioscience.

[84]  Hamid Bolouri,et al.  A data integration methodology for systems biology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[86]  George Z. Gertner,et al.  Extending a global sensitivity analysis technique to models with correlated parameters , 2007, Comput. Stat. Data Anal..

[87]  Atul Narang,et al.  A mechanistic model for eukaryotic gradient sensing: spontaneous and induced phosphoinositide polarization. , 2004, Journal of theoretical biology.

[88]  Ning Sun,et al.  Genomic approaches in dissecting complex biological pathways. , 2004, Pharmacogenomics (London).

[89]  T. W. F. Russell,et al.  Two phase process design , 1979 .

[90]  Richard Nuccitelli,et al.  Sperm initiate a Ca2+ wave in frog eggs that is more similar to Ca2+ waves initiated by IP3 than by Ca2+. , 2003, Biophysical journal.

[91]  Venkat Venkatasubramanian,et al.  An Intelligent System for Reaction Kinetic Modeling and Catalyst Design , 2004 .

[92]  John J Tyson,et al.  A proposal for robust temperature compensation of circadian rhythms , 2007, Proceedings of the National Academy of Sciences.

[93]  P. Hunter,et al.  A quantitative analysis of cardiac myocyte relaxation: a simulation study. , 2006, Biophysical journal.

[94]  Aedín C Culhane,et al.  A multivariate analysis approach to the integration of proteomic and gene expression data , 2007, Proteomics.

[95]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[96]  William J. R. Longabaugh,et al.  Computational representation of developmental genetic regulatory networks. , 2005, Developmental biology.

[97]  S. Subramaniam,et al.  Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module. , 2005, Systems biology.

[98]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[99]  Alfred H. Merrill Sphingolipid metabolism from an omics perspective , 2007 .

[100]  James W. Taylor,et al.  Global dynamic optimization for parameter estimation in chemical kinetics. , 2006, The journal of physical chemistry. A.

[101]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[102]  Vasilios Manousiouthakis,et al.  KINETIC MODEL REDUCTION USING GENETIC ALGORITHMS , 1998 .

[103]  James C. Liao,et al.  Transcriptome network component analysis with limited microarray data , 2006, Bioinform..

[104]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[105]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[106]  Erich Bornberg-Bauer,et al.  A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network , 2007, BMC Systems Biology.

[107]  A. Tanskanen,et al.  A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. , 2004, Biophysical journal.

[108]  J. Linderman,et al.  Modeling activation and desensitization of G-protein coupled receptors provides insight into ligand efficacy. , 1999, Journal of theoretical biology.

[109]  Om V. Singh Integrating “-Omics” into Biological Processes and Modeling for Bioremediation , 2007 .

[110]  Venkat Venkatasubramanian,et al.  Spontaneous emergence of complex optimal networks through evolutionary adaptation , 2004, Comput. Chem. Eng..

[111]  J. Linderman,et al.  Untangling ligand induced activation and desensitization of G-protein-coupled receptors. , 2003, Biophysical journal.

[112]  Luonan Chen,et al.  Inferring transcriptional regulatory networks from high-throughput data , 2007, Bioinform..

[113]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[114]  Ioannis P. Androulakis,et al.  Kinetic mechanism reduction based on an integer programming approach , 2000 .

[115]  Julio Saez-Rodriguez,et al.  A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks , 2006, BMC Bioinformatics.

[116]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[117]  Hong Li,et al.  Algorithms and Software for Stochastic Simulation of Biochemical Reacting Systems , 2008, Biotechnology progress.

[118]  L. Hood,et al.  A data integration methodology for systems biology: experimental verification. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Glenn Gunzelmann,et al.  Uncovering Physiologic Mechanisms of Circadian Rhythms and Sleep/Wake Regulation through Mathematical Modeling , 2007, Journal of biological rhythms.

[120]  Wojciech Szpankowski,et al.  Functional annotation of regulatory pathways , 2007, ISMB/ECCB.

[121]  W Schlegel,et al.  Activation by bacterial lipopolysaccharide causes changes in the cytosolic free calcium concentration in single peritoneal macrophages. , 1991, Journal of immunology.

[122]  Frederick L Kiechle,et al.  The -omics era and its impact. , 2004, Archives of pathology & laboratory medicine.

[123]  Joseph L Greenstein,et al.  Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium release. , 2007, Biophysical journal.

[124]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[125]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[126]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Janet Wiles,et al.  Robustness and state-space structure of Boolean gene regulatory models. , 2007, Journal of theoretical biology.

[128]  Gustavo Deco,et al.  Large-Scale Computational Modeling of Genetic Regulatory Networks , 2003, Artificial Intelligence Review.

[129]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[130]  Sherry L. Jenkins,et al.  Network analysis of FDA approved drugs and their targets. , 2007, The Mount Sinai journal of medicine, New York.

[131]  R Hofestädt,et al.  Quantitative modeling of biochemical networks , 1998, Silico Biol..

[132]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[133]  George Karypis,et al.  A Boolean algorithm for reconstructing the structure of regulatory networks. , 2004, Metabolic engineering.

[134]  M. Mavrovouniotis,et al.  Simplification of Mathematical Models of Chemical Reaction Systems. , 1998, Chemical reviews.

[135]  R S Parker,et al.  Control-relevant modeling in drug delivery. , 2001, Advanced drug delivery reviews.

[136]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[137]  Eric H Davidson,et al.  A Gene Regulatory Network Subcircuit Drives a Dynamic Pattern of Gene Expression , 2007, Science.

[138]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[139]  M. A. Henson,et al.  A molecular model for intercellular synchronization in the mammalian circadian clock. , 2007, Biophysical journal.

[140]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[141]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Eoin Fahy,et al.  A comprehensive classification system for lipids11 The evaluation of this manuscript was handled by the former Editor-in-Chief Trudy Forte. Published, JLR Papers in Press, February 16, 2005. DOI 10.1194/jlr.E400004-JLR200 , 2005, Journal of Lipid Research.

[143]  V. S. Summanwar,et al.  Solution of constrained optimization problems by multi-objective genetic algorithm , 2002 .

[144]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[145]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[146]  G. Lemon,et al.  Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation. , 2003, Journal of theoretical biology.

[147]  Bernhard O. Palsson,et al.  Dynamic simulation of the human red blood cell metabolic network , 2001, Bioinform..

[148]  Achille Messac,et al.  Integrated Energy and Flux Balance Based Multiobjective Framework for Large-Scale Metabolic Networks , 2007, Annals of Biomedical Engineering.

[149]  U. Alon,et al.  Search for computational modules in the C. elegans brain , 2004, BMC Biology.

[150]  Min Zou,et al.  A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data , 2005, Bioinform..

[151]  Nikolaos V. Sahinidis,et al.  Optimization of metabolic pathways under stability considerations , 2005, Comput. Chem. Eng..

[152]  Efstratios N. Pistikopoulos,et al.  Model-based blood glucose control for type 1 diabetes via parametric programming , 2006, IEEE Transactions on Biomedical Engineering.

[153]  P. Daoutidis,et al.  Nonlinear model reduction of chemical reaction systems , 2001 .

[154]  Yang Cao,et al.  Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems , 2005 .

[155]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[156]  P. Swain,et al.  Accurate prediction of gene feedback circuit behavior from component properties , 2007, Molecular systems biology.

[157]  William J. Bosl,et al.  Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery , 2007, BMC Systems Biology.

[158]  Joshua D. Knowles,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[159]  J. Rinzel,et al.  Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. , 1994, Journal of theoretical biology.

[160]  Paul I. Barton,et al.  Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms , 2003 .

[161]  Raghunathan Rengaswamy,et al.  A systematic framework for the development and analysis of signed digraphs for chemical processes. 2. Control loops and flowsheet analysis , 2003 .

[162]  Raghunathan Rengaswamy,et al.  A Novel Interval-Halving Framework For Automated Identification of Process Trends , 2004 .

[163]  Steffen Klamt,et al.  A Logical Model Provides Insights into T Cell Receptor Signaling , 2007, PLoS Comput. Biol..

[164]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[165]  Peter J. Woolf,et al.  Monte Carlo simulations of receptor dynamics: Insights into cell signaling , 2004, Journal of Molecular Histology.

[166]  C M Lastoskie,et al.  Direct stochastic simulation of Ca2+ motion in Xenopus eggs. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[167]  Charles L. Wilkins,et al.  Problems with the “omics” , 2006 .

[168]  Julie Clayton,et al.  RNA interference: The silent treatment , 2004, Nature.

[169]  Denis Thieffry,et al.  Dynamical modeling of syncytial mitotic cycles in Drosophila embryos , 2007, Molecular systems biology.

[170]  E. Davidson,et al.  Modeling transcriptional regulatory networks. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[171]  D. Pe’er Bayesian Network Analysis of Signaling Networks: A Primer , 2005, Science's STKE.

[172]  Alan B. Anderson,et al.  Improved generalized Fourier amplitude sensitivity test (FAST) for model assessment , 2003, Stat. Comput..

[173]  Ioannis Papamichail,et al.  Proof of Convergence for a Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2005, J. Glob. Optim..

[174]  A. Kierzek,et al.  Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. , 2004, Biophysical journal.

[175]  Peter J. Woolf,et al.  Bayesian analysis of signaling networks governing embryonic stem cell fate decisions , 2005, Bioinform..

[176]  P.M.F. Nielsen,et al.  Modelling the Mechanical Properties of Human Skin: Towards a 3D Discrete Fibre Model , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[177]  Satoru Miyano,et al.  Algorithms for Identifying Boolean Networks and Related Biological Networks Based on Matrix Multiplication and Fingerprint Function , 2000, J. Comput. Biol..

[178]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[179]  J. Pearson,et al.  Simulation of the fertilization Ca2+ wave in Xenopus laevis eggs. , 1998, Biophysical journal.

[180]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[181]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[182]  S. Chueh,et al.  An intracellular (ATP + Mg2+)-dependent calcium pump within the N1E-115 neuronal cell line. , 1985, The Journal of biological chemistry.

[183]  Riccardo Bellazzi,et al.  Inferring gene expression networks via static and dynamic data integration , 2006, MIE.

[184]  K. Komurov,et al.  Revealing static and dynamic modular architecture of the eukaryotic protein interaction network , 2007, Molecular Systems Biology.

[185]  Trupti Joshi,et al.  Inferring gene regulatory networks from multiple microarray datasets , 2006, Bioinform..

[186]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[187]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Olga G Troyanskaya,et al.  Computational identification of cellular networks and pathways , 2007 .

[189]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[190]  J Q Trojanowski,et al.  Phospholipase pathway in Alzheimer's disease brains: decrease in Galphai in dorsolateral prefrontal cortex. , 1999, Brain research. Molecular brain research.

[191]  G. Stephanopoulos,et al.  Strain improvement by metabolic engineering: lysine production as a case study for systems biology. , 2005, Current opinion in biotechnology.

[192]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[193]  Kwong-Sak Leung,et al.  Evolutionary Drug Scheduling Model for Cancer Chemotherapy , 2004, GECCO.

[194]  Upinder S Bhalla,et al.  Simulations of inositol phosphate metabolism and its interaction with InsP(3)-mediated calcium release. , 2002, Biophysical journal.

[195]  B O Palsson,et al.  Mathematical modelling of dynamics and control in metabolic networks. IV. Local stability analysis of single biochemical control loops. , 1985, Journal of theoretical biology.

[196]  E M Ross,et al.  GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. , 2000, Annual review of biochemistry.

[197]  Temple F. Smith,et al.  Overview of the Alliance for Cellular Signaling , 2002, Nature.

[198]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[199]  B. Ingalls,et al.  Deterministic characterization of stochastic genetic circuits , 2007, Proceedings of the National Academy of Sciences.

[200]  Gregory Stephanopoulos,et al.  Optimizing bioconversion pathways through systems analysis and metabolic engineering , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Gert Wanka,et al.  Conjugate duality for multiobjective composed optimization problems , 2007 .

[202]  R. Laubenbacher,et al.  A computational algebra approach to the reverse engineering of gene regulatory networks. , 2003, Journal of theoretical biology.

[203]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[204]  Radhakrishnan Mahadevan,et al.  Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals , 2005 .

[205]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[206]  D. Lauffenburger,et al.  Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways , 2006, Journal of The Royal Society Interface.

[207]  Simon Rogers,et al.  A Bayesian regression approach to the inference of regulatory networks from gene expression data , 2005, Bioinform..

[208]  Yiannis N. Kaznessis,et al.  Multi-scale models for gene network engineering , 2006 .

[209]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[210]  Eric H Davidson,et al.  Logic of gene regulatory networks. , 2007, Current opinion in biotechnology.

[211]  R M Nerem,et al.  A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. , 1996, The American journal of physiology.

[212]  R. Rengaswamy,et al.  A Systematic Framework for the Development and Analysis of Signed Digraphs for Chemical Processes. 1. Algorithms and Analysis , 2003 .

[213]  Venkat Venkatasubramanian,et al.  A hybrid genetic algorithm for efficient parameter estimation of large kinetic models , 2004, Comput. Chem. Eng..

[214]  Xiaohui Hu,et al.  Engineering optimization with particle swarm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[215]  John G. Albeck,et al.  Cue-Signal-Response Analysis of TNF-Induced Apoptosis by Partial Least Squares Regression of Dynamic Multivariate Data , 2004, J. Comput. Biol..

[216]  L. Venance,et al.  Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach , 2002, The Journal of Neuroscience.

[217]  Mitsuo Gen,et al.  Intelligent Engineering Systems through Artificial Neural Networks , 2009 .

[218]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[219]  Ravi Iyengar,et al.  Modeling Signaling Networks , 2002, Science.

[220]  Shankar Subramaniam,et al.  The Molecule Pages database , 2002, Nature.

[221]  Panos M. Pardalos,et al.  A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..

[222]  A. Maritan,et al.  Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns , 2006, Proceedings of the National Academy of Sciences.

[223]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[224]  Colin W. Taylor,et al.  Ca2+ Entry Through Plasma Membrane IP3 Receptors , 2006, Science.

[225]  Y. Rahmat-Samii,et al.  Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[226]  A Kremling,et al.  Systems biology--an engineering perspective. , 2007, Journal of biotechnology.

[227]  U. Bhalla Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. , 2004, Biophysical journal.

[228]  Abhijit Chatterjee,et al.  Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. , 2006, The Journal of chemical physics.

[229]  William E. Lorensen,et al.  Object-Oriented Modeling and Design , 1991, TOOLS.

[230]  J. Seinfeld,et al.  Automatic sensitivity analysis of kinetic mechanisms , 1979 .

[231]  E M Ross,et al.  Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. , 1996, The Journal of biological chemistry.

[232]  B. Al-kazemi,et al.  Discrete Multi-Phase Particle Swarm Optimization , 2005 .

[233]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[234]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[235]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[236]  Michael K. Ng,et al.  An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks , 2007, Bioinform..

[237]  Michael Ederer,et al.  Reduced modeling of signal transduction – a modular approach , 2007, BMC Bioinformatics.

[238]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[239]  D A Lauffenburger,et al.  Computational Model for Effects of Ligand/Receptor Binding Properties on Interleukin‐2 Trafficking Dynamics and T Cell Proliferation Response , 2000, Biotechnology progress.

[240]  B. Heller,et al.  Cell-to-cell variation in store-operated calcium entry in HEK-293 cells and its impact on the interpretation of data from stable clones expressing exogenous calcium channels. , 2000, Cell calcium.

[241]  James C. Schaff,et al.  The Virtual Cell , 2002, Annals of the New York Academy of Sciences.

[242]  E. Gilles,et al.  Thermodynamically feasible kinetic models of reaction networks. , 2007, Biophysical journal.

[243]  George Stephanopoulos,et al.  Linking physiology and transcriptional profiles by quantitative predictive models , 2007, Biotechnology and bioengineering.

[244]  Reinhard Laubenbacher,et al.  Comparison of Reverse‐Engineering Methods Using an in Silico Network , 2007, Annals of the New York Academy of Sciences.

[245]  Eric H Davidson,et al.  Developmental gene network analysis. , 2003, The International journal of developmental biology.

[246]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[247]  Taesung Park,et al.  Boolean networks using the chi-square test for inferring large-scale gene regulatory networks , 2006, BMC Bioinformatics.

[248]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[249]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[250]  Uri Alon,et al.  Coarse-graining and self-dissimilarity of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[251]  H. Kitano,et al.  A quantitative characterization of the yeast heterotrimeric G protein cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[252]  U. Bhalla Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. , 2004, Biophysical journal.

[253]  R. Winslow,et al.  Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. , 1998, Biophysical journal.

[254]  Andrea Califano,et al.  Theory and Limitations of Genetic Network Inference from Microarray Data , 2007, Annals of the New York Academy of Sciences.

[255]  John J. Tyson,et al.  Irreversible cell-cycle transitions are due to systems-level feedback , 2007, Nature Cell Biology.

[256]  Roded Sharan,et al.  Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks , 2006, J. Comput. Biol..

[257]  A. Tanskanen,et al.  Multiscale Modeling of Calcium Signaling in the Cardiac Dyad , 2006, Annals of the New York Academy of Sciences.

[258]  Gregory Stephanopoulos,et al.  CHAPTER 2 – Review of Cellular Metabolism , 1998 .

[259]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[260]  Ernesto Carafoli,et al.  Calcium signaling: A tale for all seasons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[261]  Kathleen Marchal,et al.  Inferring Transcriptional Networks by Mining 'Omics' Data , 2006 .

[262]  Marco Grzegorczyk,et al.  Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks , 2006, Bioinform..

[263]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[264]  Adam P. Arkin,et al.  Complex Systems: From chemistry to systems biology , 2009, Proceedings of the National Academy of Sciences.

[265]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[266]  R.S. Parker,et al.  A model-based algorithm for blood glucose control in Type I diabetic patients , 1999, IEEE Transactions on Biomedical Engineering.

[267]  Venkat Venkatasubramanian,et al.  Parametric Sensitivity and Search-Space Characterization Studies of Genetic Algorithms for Computer-Aided Polymer Design , 1998, J. Chem. Inf. Comput. Sci..

[268]  Julio Saez-Rodriguez,et al.  Dissecting the puzzle of life: modularization of signal transduction networks , 2005, Comput. Chem. Eng..

[269]  Russ B. Altman,et al.  An “Omics” view of drug development , 2004 .

[270]  N. A. Allen,et al.  Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. , 2006, Systems biology.

[271]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[272]  D. Lauffenburger,et al.  A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis , 2005, Science.

[273]  Keith C. C. Chan,et al.  An Effective Data Mining Technique for Reconstructing gene Regulatory Networks from Time Series Expression Data , 2007, J. Bioinform. Comput. Biol..

[274]  Michel Bouvier,et al.  Appréhender la complexité du vivant à l’ère des « Omiques » , 2006 .

[275]  D. Lauffenburger,et al.  Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. , 2006, Systems biology.

[276]  L. Petzold,et al.  Model reduction for chemical kinetics: an optimization approach , 1999 .

[277]  John J Tyson,et al.  Mathematical modeling as a tool for investigating cell cycle control networks. , 2007, Methods.

[278]  G. Shull,et al.  Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. , 1992, The Journal of biological chemistry.

[279]  Shankar Subramaniam,et al.  Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages , 2006, Genome Biology.

[280]  S. Kauffman,et al.  Genetic networks with canalyzing Boolean rules are always stable. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[281]  Uri Alon,et al.  Simplicity in biology , 2007, Nature.

[282]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[283]  Alberto de la Fuente,et al.  Discovery of meaningful associations in genomic data using partial correlation coefficients , 2004, Bioinform..

[284]  C. Glass,et al.  Systems biology of macrophages. , 2007, Advances in experimental medicine and biology.

[285]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[286]  Adam P. Arkin,et al.  Statistical Construction of Chemical Reaction Mechanisms from Measured Time-Series , 1995 .

[287]  John J. Tyson,et al.  Parameter Estimation for a Mathematical Model of the Cell Cycle in Frog Eggs , 2005, J. Comput. Biol..