Modal Sequent Calculi Labelled with Truth Values: Cut Elimination
暂无分享,去创建一个
[1] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[2] Haskell B. Curry,et al. The elimination theorem when modality is present , 1952, Journal of Symbolic Logic.
[3] George Polya,et al. Induction and Analogy in Mathematics , 1954 .
[4] G. Pólya. Mathematics and Plausible Reasoning , 1958 .
[5] Kazuo Matsumoto,et al. Gentzen method in modal calculi. II , 1957 .
[6] R. L. Goodstein,et al. Provability in logic , 1959 .
[7] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[8] H. Schwichtenberg. Proof Theory: Some Applications of Cut-Elimination , 1977 .
[9] R. Statman. Bounds for proof-search and speed-up in the predicate calculus , 1978 .
[10] G. Takeuti. Two Applications of Logic to Mathematics , 1978 .
[11] Masahiko Sato. A Cut-Free Gentzen-Type System for the Modal Logic S5 , 1980, J. Symb. Log..
[12] Nuel Belnap,et al. Display logic , 1982, J. Philos. Log..
[13] Andrea Masini,et al. 2-Sequent Calculus: A Proof Theory of Modalities , 1992, Ann. Pure Appl. Log..
[14] Claudio Cerrato. Cut-free modal sequents for normal modal logics , 1993, Notre Dame J. Formal Log..
[15] Heinrich Wansing,et al. Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..
[16] Wenhui Zhang. Depth of Proofs, Depth of Cut-Formulas and Complexity of Cut Formulas , 1994, Theor. Comput. Sci..
[17] Jörg Hudelmaier,et al. Improved Decision Procedures for the Modal Logics K, T, and S4 , 1995, CSL.
[18] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[19] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[20] Dov M. Gabbay,et al. Labelled Deductive Systems: Volume 1 , 1996 .
[21] Grigori Mints,et al. Indexed systems of sequents and cut-elimination , 1997, J. Philos. Log..
[22] A.. Interpolants , cut elimination and flow graphs for the propositional calculus , 1997 .
[23] Dov M. Gabbay,et al. Algorithmic Proof Methods and Cut Elimination for Implicational Logics Part I: Modal Implication , 1998, Stud Logica.
[24] Samuel R. Buss,et al. Chapter I - An Introduction to Proof Theory , 1998 .
[25] P. Pudlák. Chapter VIII - The Lengths of Proofs , 1998 .
[26] Alessandra Carbone,et al. Duplication of Directed Graphs and Exponential Blow Up of Proofs , 1999, Ann. Pure Appl. Log..
[27] Luca Viganò,et al. Labelled non-classical logics , 2000 .
[28] Torben Braüner,et al. A Cut-Free Gentzen Formulation of the Modal Logic S5 , 2000, Log. J. IGPL.
[29] Alexander Leitsch,et al. Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..
[30] Cristina Sernadas,et al. Fibring: completeness preservation , 2001, Journal of Symbolic Logic.
[31] Cristina Sernadas,et al. Modulated Fibring and The Collapsing Problem , 2002, J. Symb. Log..
[32] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[33] Luca Viganò,et al. Fibring Labelled Deduction Systems , 2002, J. Log. Comput..
[34] Dov M. Gabbay,et al. Chapter 13 – Labelled Deductive Systems , 2003 .
[35] Luca Viganò,et al. Truth-values as labels: a general recipe for labelled deduction , 2003, J. Appl. Non Class. Logics.
[36] Kazushige Terui,et al. On the Computational Complexity of Cut-Elimination in Linear Logic , 2003, ICTCS.
[37] Amílcar Sernadas,et al. Reasoning About Quantum Systems , 2004, JELIA.
[38] António Pacheco,et al. Probabilistic Situation Calculus , 2001, Annals of Mathematics and Artificial Intelligence.
[39] Luca Viganò,et al. Modal Sequent Calculi Labelled with Truth Values: Completeness, Duality and Analyticity , 2004, Log. J. IGPL.