Modal Sequent Calculi Labelled with Truth Values: Cut Elimination

Cut elimination is shown, in a constructive way, to hold in sequent calculi labelled with truth values for a wide class of normal modal logics, supporting global and local reasoning and allowing a general frame semantics. The complexity of cut elimination is studied in terms of the increase of logical depth of the derivations. A hyperexponential worst case bound is established. The subformula property and a similar property for the label terms are shown to be satisfied by that class of modal sequent calculi. Modal logics presented by these calculi are proven to be globally and locally consistent.

[1]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[2]  Haskell B. Curry,et al.  The elimination theorem when modality is present , 1952, Journal of Symbolic Logic.

[3]  George Polya,et al.  Induction and Analogy in Mathematics , 1954 .

[4]  G. Pólya Mathematics and Plausible Reasoning , 1958 .

[5]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .

[6]  R. L. Goodstein,et al.  Provability in logic , 1959 .

[7]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[8]  H. Schwichtenberg Proof Theory: Some Applications of Cut-Elimination , 1977 .

[9]  R. Statman Bounds for proof-search and speed-up in the predicate calculus , 1978 .

[10]  G. Takeuti Two Applications of Logic to Mathematics , 1978 .

[11]  Masahiko Sato A Cut-Free Gentzen-Type System for the Modal Logic S5 , 1980, J. Symb. Log..

[12]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[13]  Andrea Masini,et al.  2-Sequent Calculus: A Proof Theory of Modalities , 1992, Ann. Pure Appl. Log..

[14]  Claudio Cerrato Cut-free modal sequents for normal modal logics , 1993, Notre Dame J. Formal Log..

[15]  Heinrich Wansing,et al.  Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..

[16]  Wenhui Zhang Depth of Proofs, Depth of Cut-Formulas and Complexity of Cut Formulas , 1994, Theor. Comput. Sci..

[17]  Jörg Hudelmaier,et al.  Improved Decision Procedures for the Modal Logics K, T, and S4 , 1995, CSL.

[18]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[19]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[20]  Dov M. Gabbay,et al.  Labelled Deductive Systems: Volume 1 , 1996 .

[21]  Grigori Mints,et al.  Indexed systems of sequents and cut-elimination , 1997, J. Philos. Log..

[22]  A. Interpolants , cut elimination and flow graphs for the propositional calculus , 1997 .

[23]  Dov M. Gabbay,et al.  Algorithmic Proof Methods and Cut Elimination for Implicational Logics Part I: Modal Implication , 1998, Stud Logica.

[24]  Samuel R. Buss,et al.  Chapter I - An Introduction to Proof Theory , 1998 .

[25]  P. Pudlák Chapter VIII - The Lengths of Proofs , 1998 .

[26]  Alessandra Carbone,et al.  Duplication of Directed Graphs and Exponential Blow Up of Proofs , 1999, Ann. Pure Appl. Log..

[27]  Luca Viganò,et al.  Labelled non-classical logics , 2000 .

[28]  Torben Braüner,et al.  A Cut-Free Gentzen Formulation of the Modal Logic S5 , 2000, Log. J. IGPL.

[29]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[30]  Cristina Sernadas,et al.  Fibring: completeness preservation , 2001, Journal of Symbolic Logic.

[31]  Cristina Sernadas,et al.  Modulated Fibring and The Collapsing Problem , 2002, J. Symb. Log..

[32]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[33]  Luca Viganò,et al.  Fibring Labelled Deduction Systems , 2002, J. Log. Comput..

[34]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[35]  Luca Viganò,et al.  Truth-values as labels: a general recipe for labelled deduction , 2003, J. Appl. Non Class. Logics.

[36]  Kazushige Terui,et al.  On the Computational Complexity of Cut-Elimination in Linear Logic , 2003, ICTCS.

[37]  Amílcar Sernadas,et al.  Reasoning About Quantum Systems , 2004, JELIA.

[38]  António Pacheco,et al.  Probabilistic Situation Calculus , 2001, Annals of Mathematics and Artificial Intelligence.

[39]  Luca Viganò,et al.  Modal Sequent Calculi Labelled with Truth Values: Completeness, Duality and Analyticity , 2004, Log. J. IGPL.