Evidence for a monolayer excitonic insulator

[1]  Zhen Bi,et al.  Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide , 2019, Nature Communications.

[2]  M. Fabrizio,et al.  Exciton topology and condensation in a model quantum spin Hall insulator , 2020, 2006.00933.

[3]  Kenji Watanabe,et al.  Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene , 2020, Nature.

[4]  D. Varsano,et al.  A monolayer transition-metal dichalcogenide as a topological excitonic insulator , 2019, Nature Nanotechnology.

[5]  K. Shimada,et al.  Electrical Tuning of the Excitonic Insulator Ground State of Ta_{2}NiSe_{5}. , 2019, Physical review letters.

[6]  M. Fuhrer,et al.  Possible excitonic insulating phase in quantum confined Sb nanoflakes. , 2019, Nano letters.

[7]  James Hone,et al.  Disorder in van der Waals heterostructures of 2D materials , 2019, Nature Materials.

[8]  A. Bostwick,et al.  Intrinsic insulating ground state in transition metal dichalcogenide TiSe2 , 2018, Physical Review Materials.

[9]  Wenjin Zhao,et al.  Gate-induced superconductivity in a monolayer topological insulator , 2018, Science.

[10]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[11]  Takashi Taniguchi,et al.  Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2 , 2018, Nature Physics.

[12]  C. Kane,et al.  Fractional Excitonic Insulator. , 2018, Physical review letters.

[13]  J. Klem,et al.  Anomalously large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer , 2018, New Journal of Physics.

[14]  anonymous In Review , 2018 .

[15]  D. Xing,et al.  Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe2 , 2017, Nature Communications.

[16]  Kenji Watanabe,et al.  Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal , 2017, Science.

[17]  I. Sodemann,et al.  Mixed-valence insulators with neutral Fermi surfaces , 2017, Nature Communications.

[18]  C. Nayak,et al.  Topological Exciton Fermi Surfaces in Two-Component Fractional Quantized Hall Insulators. , 2016, Physical review letters.

[19]  L. Du,et al.  Evidence for a topological excitonic insulator in InAs/GaSb bilayers , 2017, Nature Communications.

[20]  Timothy C. Berkelbach,et al.  Coulomb engineering of the bandgap and excitons in two-dimensional materials , 2017, Nature Communications.

[21]  Yulin Chen,et al.  Quantum spin Hall state in monolayer 1T'-WTe2 , 2017, Nature Physics.

[22]  H. Kono,et al.  Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5 , 2017, Nature Communications.

[23]  F. Flicker,et al.  Signatures of exciton condensation in a transition metal dichalcogenide , 2016, Science.

[24]  Zaiyao Fei,et al.  Edge conduction in monolayer WTe2 , 2016, Nature Physics.

[25]  T. Taniguchi,et al.  Excitonic superfluid phase in double bilayer graphene , 2016, Nature Physics.

[26]  B. Halperin,et al.  Quantum Hall drag of exciton condensate in graphene , 2016, Nature Physics.

[27]  T. Taniguchi,et al.  Signatures of Phonon and Defect-Assisted Tunneling in Planar Metal-Hexagonal Boron Nitride-Graphene Junctions. , 2016, Nano letters.

[28]  Ji Feng,et al.  On the Quantum Spin Hall Gap of Monolayer 1T′‐WTe2 , 2016, Advanced materials.

[29]  R. Car,et al.  Topological Nonsymmorphic Metals from Band Inversion , 2016 .

[30]  Qian Niu,et al.  Topological phases in two-dimensional materials: a review , 2015, Reports on progress in physics. Physical Society.

[31]  Q. Gibson,et al.  Correlation of crystal quality and extreme magnetoresistance of WTe2 , 2015, 1506.04823.

[32]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[33]  D. Pikulin,et al.  Interplay of exciton condensation and the quantum spin hall effect in InAs/GaSb bilayers. , 2013, Physical review letters.

[34]  J. Eisenstein Exciton Condensation in Bilayer Quantum Hall Systems , 2013, 1306.0584.

[35]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[36]  F. Guinea,et al.  Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.

[37]  F. Guinea,et al.  Dirac cones reshaped by interaction effects in suspended graphene (vol 7, pg 701, 2011) , 2011, 1104.1396.

[38]  T. Mizokawa,et al.  Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. , 2009, Physical review letters.

[39]  C. Battaglia,et al.  Evidence for an excitonic insulator phase in 1T-TiSe2. , 2007, Physical review letters.

[40]  R. Cava,et al.  Semimetal-to-semimetal charge density wave transition in 1T-TiSe(2). , 2007, Physical review letters.

[41]  D. Tsui,et al.  The Quantized Hall Insulator: A New Insulator in Two-Dimensions , 1998, cond-mat/9810172.

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[46]  Lee,et al.  Global phase diagram in the quantum Hall effect. , 1992, Physical review. B, Condensed matter.

[47]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[48]  H. Fukuyama,et al.  Hall Effect in Excitonic Insulator , 1969 .

[49]  John M. Blatt,et al.  Bose-Einstein Condensation of Excitons , 1962 .