Algorithms in Recommender Systems

Modern web platforms dealing with large number of items use recommender systems to automatically suggest new interesting items to users and, hence, to keep them using the platform. From the users’ perspective, recommender systems help them handle information overload. In our presentation, we discussed methods and algorithms used in recommender systems. We started with collaborative filtering, which traditionally is the most used approach, then we talked about content-based and knowledge-based recommender systems and highlighted their merits.

[1]  Barry Smyth,et al.  Conversational Collaborative Recommendation – An Experimental Analysis , 2005, Artificial Intelligence Review.

[2]  Michael R. Lyu,et al.  SoRec: social recommendation using probabilistic matrix factorization , 2008, CIKM '08.

[3]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[4]  S. Sénécal,et al.  The influence of online product recommendations on consumers' online choices , 2004 .

[5]  Bradley N. Miller,et al.  Social Information Filtering : Algorithms for Automating “ Word of Mouth , ” , 2017 .

[6]  Takashi Yagi,et al.  Group recommendation using feature space representing behavioral tendency and power balance among members , 2011, RecSys '11.

[7]  Fillia Makedon,et al.  Attack detection in time series for recommender systems , 2006, KDD '06.

[8]  Andreas S. Weigend Analyzing customer behavior at Amazon.com , 2003, KDD '03.

[9]  Koby Crammer,et al.  Pranking with Ranking , 2001, NIPS.

[10]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[11]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[12]  Jonathan L. Herlocker,et al.  Clustering items for collaborative filtering , 1999 .

[13]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[14]  Wee Sun Lee Collaborative Learning for Recommender Systems , 2001 .

[15]  Rashmi R. Sinha,et al.  The role of transparency in recommender systems , 2002, CHI Extended Abstracts.

[16]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[17]  Wei-Ying Ma,et al.  Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes , 2002, UAI.

[18]  Guy Shani,et al.  A Survey of Accuracy Evaluation Metrics of Recommendation Tasks , 2009, J. Mach. Learn. Res..

[19]  Bamshad Mobasher,et al.  Attacks and Remedies in Collaborative Recommendation , 2007, IEEE Intelligent Systems.

[20]  Shilad Sen,et al.  Rating: how difficult is it? , 2011, RecSys '11.

[21]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[22]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2000, Journal of Cryptology.

[23]  Wenliang Du,et al.  Privacy-preserving collaborative filtering using randomized perturbation techniques , 2003, Third IEEE International Conference on Data Mining.

[24]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[25]  Qiang Yang,et al.  Scalable collaborative filtering using cluster-based smoothing , 2005, SIGIR '05.

[26]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[27]  José Ramón Quevedo,et al.  Analyzing Sensory Data Using Non-linear Preference Learning with Feature Subset Selection , 2004, ECML.

[28]  Sean M. McNee,et al.  Making recommendations better: an analytic model for human-recommender interaction , 2006, CHI Extended Abstracts.

[29]  Kartik Hosanagar,et al.  Recommender systems and their impact on sales diversity , 2007, EC '07.

[30]  Arkadiusz Paterek,et al.  Improving regularized singular value decomposition for collaborative filtering , 2007 .

[31]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[32]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[33]  Bhaskar Mehta,et al.  Attack resistant collaborative filtering , 2008, SIGIR '08.

[34]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[35]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[36]  Arnd Kohrs,et al.  Improving collaborative filtering for new-users by smart object selection , 2001 .

[37]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[38]  Sean M. McNee,et al.  Accurate is not always good: How Accuracy Metrics have hurt Recommender Systems , 2006 .

[39]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[40]  Saul Vargas,et al.  Novelty and Diversity in Recommender Systems , 2015, Recommender Systems Handbook.

[41]  David M. Pennock,et al.  A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains , 2002, NIPS.

[42]  Ilya Mironov,et al.  Differentially private recommender systems: building privacy into the net , 2009, KDD.

[43]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[44]  David M. Nichols,et al.  Implicit Rating and Filtering , 1998 .

[45]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[46]  John Riedl,et al.  You are what you say: privacy risks of public mentions , 2006, SIGIR '06.

[47]  Fillia Makedon,et al.  Analysis of a low-dimensional linear model under recommendation attacks , 2006, SIGIR.

[48]  David McSherry,et al.  Explanation in Recommender Systems , 2005, Artificial Intelligence Review.

[49]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[50]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[51]  J. Bauer The power of suggestion. , 1999, Journal of perianesthesia nursing : official journal of the American Society of PeriAnesthesia Nurses.

[52]  Ron Kohavi Online controlled experiments: introduction, learnings, and humbling statistics , 2012, RecSys '12.

[53]  Pat Langley,et al.  A Personalized System for Conversational Recommendations , 2011, J. Artif. Intell. Res..

[54]  Yuval Elovici,et al.  MarCol: A Market-Based Recommender System , 2007, IEEE Intelligent Systems.

[55]  Eric Horvitz,et al.  Social Choice Theory and Recommender Systems: Analysis of the Axiomatic Foundations of Collaborative Filtering , 2000, AAAI/IAAI.

[56]  Masashi Sugiyama,et al.  Influence-based active learning for collaborative filtering (「プリファレンスモデリングと推薦システム」及び一般) , 2007 .

[57]  Kirsten Swearingen,et al.  Beyond Algorithms: An HCI Perspective on Recommender Systems , 2001 .

[58]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[59]  Francesco Ricci,et al.  Acquiring and Revising Preferences in a Critique-Based Mobile Recommender System , 2007, IEEE Intelligent Systems.

[60]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[61]  Gerald Häubl,et al.  Recommending or persuading?: the impact of a shopping agent's algorithm on user behavior , 2001, EC '01.

[62]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[63]  Pattie Maes,et al.  Agents that reduce work and information overload , 1994, CACM.

[64]  John Riedl,et al.  Shilling recommender systems for fun and profit , 2004, WWW '04.

[65]  Klaas Bosteels,et al.  Music Recommendation and the Long Tail , 2010 .

[66]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[67]  Neil J. Hurley Towards Diverse Recommendation , 2011, DiveRS@RecSys.

[68]  Barry Smyth,et al.  Trust in recommender systems , 2005, IUI.

[69]  Neil J. Hurley,et al.  Collaborative recommendation: A robustness analysis , 2004, TOIT.

[70]  S. Robertson The probability ranking principle in IR , 1997 .

[71]  Barry Smyth,et al.  Compound Critiques for Conversational Recommender Systems , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[72]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[73]  S. S. Stevens Mathematics, measurement, and psychophysics. , 1951 .

[74]  Qian Xu,et al.  The bandwagon effect of collaborative filtering technology , 2008, CHI Extended Abstracts.

[75]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[76]  Jonathan L. Herlocker,et al.  A collaborative filtering algorithm and evaluation metric that accurately model the user experience , 2004, SIGIR '04.

[77]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[78]  John Riedl,et al.  An Algorithmic Framework for Performing Collaborative Filtering , 1999, SIGIR Forum.

[79]  L. Sweeney Simple Demographics Often Identify People Uniquely , 2000 .

[80]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[81]  Naoki Abe,et al.  Collaborative Filtering Using Weighted Majority Prediction Algorithms , 1998, ICML.

[82]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[83]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[84]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[85]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[86]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[87]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[88]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[89]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[90]  Richard S. Zemel,et al.  The multiple multiplicative factor model for collaborative filtering , 2004, ICML.