Image Fusion Using the Quincunx-Sampled Discrete Wavelet Frame

In this chapter, a novel image fusion algorithm based on the quincunx-sampled discrete wavelet frame is presented. We first show the replaceability of sampling matrix in multidimensional perfect reconstruction filter banks. By using the replaceability, the quincunx-sampled discrete wavelet frame is developed, and its characteristics are discussed. We then incorporate the quincunx-sampled frame into the multiscale based image fusion scheme. A nearly shift-invariant fusion algorithm with low redundancy is achieved, which is finally tested and compared with existing fusion algorithms on various image datasets. The experimental results show that the proposed fusion algorithm can produce high-quality fused images rapidly.

[1]  Olivier Rioul,et al.  A discrete-time multiresolution theory , 1993, IEEE Trans. Signal Process..

[2]  S. Sides,et al.  Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic , 1991 .

[3]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[4]  Zhongliang Jing,et al.  A Simple Method to Build Oversampled Filter Banks and Tight Frames , 2007, IEEE Transactions on Image Processing.

[5]  Q Guihong,et al.  Medical image fusion by wavelet transform modulus maxima. , 2001, Optics express.

[6]  Myeong-Ryong Nam,et al.  Fusion of multispectral and panchromatic Satellite images using the curvelet transform , 2005, IEEE Geoscience and Remote Sensing Letters.

[7]  Gonzalo Pajares,et al.  A wavelet-based image fusion tutorial , 2004, Pattern Recognit..

[8]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[9]  Rick S. Blum,et al.  A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application , 1999, Proc. IEEE.

[10]  Oliver Rockinger,et al.  Image sequence fusion using a shift-invariant wavelet transform , 1997, Proceedings of International Conference on Image Processing.

[11]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[13]  Peter J. Burt,et al.  Enhanced image capture through fusion , 1993, 1993 (4th) International Conference on Computer Vision.

[14]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[15]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Ivan W. Selesnick,et al.  A Higher Density Discrete Wavelet Transform , 2006, IEEE Transactions on Signal Processing.

[17]  Alexander Toet,et al.  A morphological pyramidal image decomposition , 1989, Pattern Recognit. Lett..

[18]  Mark E. Oxley,et al.  Physiologically motivated image fusion for object detection using a pulse coupled neural network , 1999, IEEE Trans. Neural Networks.

[19]  Laure J. Chipman,et al.  Wavelets and image fusion , 1995, Proceedings., International Conference on Image Processing.

[20]  Jelena Kovacevic,et al.  FCO sampling of digital video using perfect reconstruction filter banks , 1993, IEEE Trans. Image Process..

[21]  B. S. Manjunath,et al.  Multi-sensor image fusion using the wavelet transform , 1994, Proceedings of 1st International Conference on Image Processing.

[22]  Jia Yonghong,et al.  Fusion of Landsat TM and SAR Images Based on Principal Component Analysis , 2012 .

[23]  Zhiyun Gao,et al.  Multispectral image fusion using wavelet transform , 1996, Other Conferences.

[24]  Jan P. Allebach,et al.  The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices , 1991 .

[25]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[26]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[27]  Alexander Toet,et al.  Image fusion by a ration of low-pass pyramid , 1989, Pattern Recognit. Lett..

[28]  M. Vetterli Multi-dimensional sub-band coding: Some theory and algorithms , 1984 .

[29]  Quan Pan,et al.  Color based grayscale-fused image enhancement algorithm for video surveillance , 2004, Third International Conference on Image and Graphics (ICIG'04).

[30]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[31]  Vladimir Petrovic,et al.  Objective image fusion performance measure , 2000 .

[32]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[33]  Cedric Nishan Canagarajah,et al.  Image Fusion Using Complex Wavelets , 2002, BMVC.

[34]  Edward H. Adelson,et al.  Merging Images Through Pattern Decomposition , 1985, Optics & Photonics.

[35]  P. Vaidyanathan Perfect reconstruction QMF banks for two-dimensional applications , 1987 .

[36]  G. Qu,et al.  Information measure for performance of image fusion , 2002 .