Simple technique for integrating compact silicon devices within optical fibers.

In this work, we present a simple fabrication process enabling the integration of a subwavelength amorphous silicon layer inside optical fibers by means of the arc discharge technique. To assess our method, we have fabricated a compact in-line Fabry-Perot interferometer consisting of a thin (<1  μm) a-Si:H layer completely embedded within a standard single-mode optical fiber. The device exhibits low loss (1.3 dB) and high interference fringe visibility (~80%) both in reflection and transmission, due to the high refractive index contrast between silica and a-Si:H. A high linear temperature sensitivity up to 106  pm/°C is demonstrated in the range 120°C-400°C. The proposed interferometer is attractive for point monitoring applications as well as for ultrahigh-temperature sensing in harsh environments.

[1]  Pier J. A. Sazio,et al.  Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres , 2012, Nature Photonics.

[2]  J. Yang,et al.  Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. , 2011, Optics letters.

[3]  D. Paladino,et al.  Microstructured Fiber Bragg Gratings , 2009, Journal of Lightwave Technology.

[4]  Byeong Ha Lee,et al.  Interferometric Fiber Optic Sensors , 2012, Sensors.

[5]  Y. Rao,et al.  In-line fiber-optic etalon formed by hollow-core photonic crystal fiber , 2007, 2007 Asia Optical Fiber Communication and Optoelectronics Conference.

[6]  Andrea Cusano,et al.  Lab-on-Fiber devices as an all around platform for sensing , 2013 .

[7]  Federico Capasso,et al.  Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. , 2011, Nano letters.

[8]  Yunjiang Rao,et al.  Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining. , 2007 .

[9]  R. Stolen,et al.  Advancements in semiconductor core optical fiber , 2010 .

[10]  Henry F. Taylor,et al.  Dielectric mirror embedded optical fiber couplers , 1994 .

[11]  Henry F. Taylor,et al.  In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors , 1992 .

[12]  Henry F. Taylor,et al.  Interferometric optical fibre sensors using internal mirrors , 1988 .

[13]  J. Jones,et al.  Fabrication of single-mode fibre optic Fabry-Perot interferometers using fusion spliced titanium dioxide optical coatings , 1992 .

[14]  Marc Douay,et al.  Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers , 1995 .

[15]  Antonello Cutolo,et al.  Lab-on-fiber technology: toward multifunctional optical nanoprobes. , 2012, ACS nano.

[16]  T. Itoh,et al.  Linear thermal expansion coefficients of amorphous and microcrystalline silicon films , 2002 .

[17]  P. A. S. Jorge,et al.  Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement , 2012, IEEE Sensors Journal.

[18]  Stephen F Collins,et al.  Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings , 1997 .

[19]  Luigi Moretti,et al.  Study of the thermo-optic effect in hydrogenated amorphous silicon and hydrogenated amorphous silicon carbide between 300 and 500 K at 1.55 μm , 2001 .

[20]  J. Provine,et al.  Optical fiber tips functionalized with semiconductor photonic crystal cavities , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[21]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[22]  K. Peters Fiber Bragg Grating Sensors , 2009 .

[23]  Min Liu,et al.  In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers , 2012, Sensors.

[24]  Vincenzo Galdi,et al.  Evidence of guided resonances in photonic quasicrystal slabs , 2011 .