Online Model-Selection and Learning for Nonlinear Estimation Based on Multikernel Adaptive Filtering

[1]  Cédric Richard,et al.  A stochastic behavior analysis of stochastic restricted-gradient descent algorithm in reproducing kernel hilbert spaces , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Masahiro Yukawa,et al.  Krylov-Proportionate Adaptive Filtering Techniques Not Limited to Sparse Systems , 2009, IEEE Transactions on Signal Processing.

[3]  Isao Yamada,et al.  An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques , 2002, IEEE Trans. Signal Process..

[4]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[5]  Masahiro Yukawa,et al.  On Kernel design for online model selection by Gaussian multikernel adaptive filtering , 2014, Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific.

[6]  I. Yamada,et al.  Pairwise Optimal Weight Realization—Acceleration Technique for Set-Theoretic Adaptive Parallel Subgradient Projection Algorithm , 2006, IEEE Transactions on Signal Processing.

[7]  Masahiro Yukawa,et al.  On adaptivity of online model selection method based on multikernel adaptive filtering , 2013, 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.

[8]  Slawomir Stanczak,et al.  Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information , 2014, IEEE Transactions on Vehicular Technology.

[9]  I. Yamada,et al.  The Adaptive Projected Subgradient Method over the Fixed Point Set of Strongly Attracting Nonexpansive Mappings , 2006 .

[10]  Isao Yamada,et al.  A sparse adaptive filtering using time-varying soft-thresholding techniques , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Isao Yamada,et al.  A Flexible Peak-To-Average Power Ratio Reduction Scheme for OFDM Systems by the Adaptive Projected Subgradient Method , 2009, IEEE Transactions on Signal Processing.

[12]  Badong Chen,et al.  Quantized Kernel Least Mean Square Algorithm , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Charles A. Micchelli,et al.  Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..

[14]  Alexander J. Smola,et al.  Online learning with kernels , 2001, IEEE Transactions on Signal Processing.

[15]  W. T. Federer,et al.  Stochastic Approximation and NonLinear Regression , 2003 .

[16]  Youngchul Sung,et al.  Dual-Domain Adaptive Beamformer Under Linearly and Quadratically Constrained Minimum Variance , 2013, IEEE Transactions on Signal Processing.

[17]  Masahiro Yukawa,et al.  Efficient Dictionary-Refining Kernel Adaptive Filter With Fundamental Insights , 2016, IEEE Transactions on Signal Processing.

[18]  Isao Yamada,et al.  Robust Reduced-Rank Adaptive Algorithm Based on Parallel Subgradient Projection and Krylov Subspace , 2009, IEEE Transactions on Signal Processing.

[19]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[20]  Jiaxin Wang,et al.  Non-flat function estimation with a multi-scale support vector regression , 2006, Neurocomputing.

[21]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[22]  Stephen P. Boyd,et al.  Optimal kernel selection in Kernel Fisher discriminant analysis , 2006, ICML.

[23]  Masahiro Yukawa,et al.  Adaptive Nonlinear Estimation Based on Parallel Projection Along Affine Subspaces in Reproducing Kernel Hilbert Space , 2015, IEEE Transactions on Signal Processing.

[24]  Wolfgang Utschick,et al.  A Fast Stochastic Gradient Algorithm: Maximal Use of Sparsification Benefits under Computational Constraints , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[25]  Paul Honeine,et al.  Online Prediction of Time Series Data With Kernels , 2009, IEEE Trans. Signal Process..

[26]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[27]  Shigenobu Sasaki,et al.  An Efficient Adaptive Filtering Scheme Based on Combining Multiple Metrics , 2014, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[28]  Holger Dette,et al.  Generalized Latin Hypercube Design for Computer Experiments , 2010, Technometrics.

[29]  Masahiro Yukawa,et al.  Multikernel Adaptive Filtering , 2012, IEEE Transactions on Signal Processing.

[30]  Klaus-Robert Müller,et al.  A better metric in kernel adaptive filtering , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[31]  Miguel Lázaro-Gredilla,et al.  Kernel Recursive Least-Squares Tracker for Time-Varying Regression , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[32]  Sergios Theodoridis,et al.  Adaptive Learning in a World of Projections , 2011, IEEE Signal Processing Magazine.

[33]  Isao Yamada,et al.  Exploiting sparsity in feed-forward active noise control with adaptive Douglas-Rachford splitting , 2013, 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.

[34]  Patrick L. Combettes,et al.  Stochastic forward-backward and primal-dual approximation algorithms with application to online image restoration , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[35]  Isao Yamada,et al.  Efficient Blind MAI Suppression in DS/CDMA Systems by Embedded Constraint Parallel Projection Techniques , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[36]  Isao Yamada,et al.  Adaptive Parallel Quadratic-Metric Projection Algorithms , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[37]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[38]  Isao Yamada,et al.  Multi-Domain Adaptive Learning Based on Feasibility Splitting and Adaptive Projected Subgradient Method , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[39]  Hong Yan,et al.  Framelet Kernels With Applications to Support Vector Regression and Regularization Networks , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[40]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[41]  Masahiro Yukawa,et al.  Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces , 2014, IEEE Transactions on Signal Processing.

[42]  Isao Yamada,et al.  Set-theoretic DS/CDMA receivers for fading channels by adaptive projected subgradient method , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[43]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[44]  Isao Yamada,et al.  A Unified View of Adaptive Variable-Metric Projection Algorithms , 2009, EURASIP J. Adv. Signal Process..

[45]  Alexander J. Smola,et al.  Learning the Kernel with Hyperkernels , 2005, J. Mach. Learn. Res..

[46]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[47]  T. Hinamoto,et al.  Extended theory of learning identification , 1975 .

[48]  Sergios Theodoridis,et al.  Adaptive Constrained Learning in Reproducing Kernel Hilbert Spaces: The Robust Beamforming Case , 2009, IEEE Transactions on Signal Processing.

[49]  M. Kloft,et al.  l p -Norm Multiple Kernel Learning , 2011 .

[50]  Isao Yamada,et al.  Multiaccess Interference Suppression in Orthogonal Space–Time Block Coded MIMO Systems by Adaptive Projected Subgradient Method , 2008, IEEE Transactions on Signal Processing.

[51]  Mehmet Gönen,et al.  Bayesian Efficient Multiple Kernel Learning , 2012, ICML.

[52]  Stéphane Canu,et al.  Frames, Reproducing Kernels, Regularization and Learning , 2005, J. Mach. Learn. Res..

[53]  Klaus-Robert Müller,et al.  Why Does a Hilbertian Metric Work Efficiently in Online Learning With Kernels? , 2016, IEEE Signal Processing Letters.

[54]  Isao Yamada,et al.  Sparsity-aware adaptive filtering based on a Douglas-Rachford splitting , 2011, 2011 19th European Signal Processing Conference.

[55]  Kazuhiko Ozeki,et al.  An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties , 1984 .

[56]  Masahiro Yukawa,et al.  Online model selection and learning by multikernel adaptive filtering , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[57]  J. Nagumo,et al.  A learning method for system identification , 1967, IEEE Transactions on Automatic Control.

[58]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[59]  Lu Liu,et al.  Least Square Regularized Regression in Sum Space , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[60]  Isao Yamada,et al.  Set‐theoretic adaptive filtering based on data‐driven sparsification , 2011 .