Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card

Abstract Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.

[1]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[2]  Wiktor Weibull,et al.  Efficient 3D elastic full-waveform inversion using wavefield reconstruction methods , 2016 .

[3]  Baoli Wang,et al.  A graphics processing unit implementation of time-domain full-waveform inversion , 2015 .

[4]  R. Pratt,et al.  INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .

[5]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[6]  S. Operto,et al.  Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion , 2009 .

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  Hong Liu,et al.  3D hybrid-domain full waveform inversion on GPU , 2015, Comput. Geosci..

[9]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[10]  William W. Symes,et al.  Computational Strategies For Reverse-time Migration , 2008 .

[11]  Max Grossman,et al.  Professional CUDA C Programming , 2014 .

[12]  Liangguo Dong,et al.  Full waveform inversion method using envelope objective function without low frequency data , 2014 .

[13]  Jianghai Xia,et al.  Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach , 2007 .

[14]  Youngseok Kim,et al.  An algorithm for 3D acoustic time-Laplace-Fourier-domain hybrid full waveform inversion , 2013 .

[15]  R. Pratt,et al.  Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data , 1991 .

[16]  D. Köhn,et al.  Time Domain 2D Elastic Full Waveform Tomography , 2011 .

[17]  Yaning Liu,et al.  3D seismic reverse time migration on GPGPU , 2013, Comput. Geosci..

[18]  Shi Ying,et al.  Denoise Investigation on Prestack Reverse time Migration Based on GPU/CPU Collaborative Parallel Accelerating Computation , 2013, 2013 International Conference on Computational and Information Sciences.

[19]  R. Wu,et al.  Envelope inversion– Some application issues , 2013 .

[20]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[21]  Peter Messmer,et al.  Forward and adjoint simulations of seismic wave propagation on emerging large-scale GPU architectures , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[22]  R. Clapp,et al.  Least Squares Reverse Time Migration on GPUs - Balancing IO and Computation , 2012 .

[23]  D. Köhn,et al.  On the influence of model parametrization in elastic full waveform tomography , 2012 .

[24]  Sergei Gorlatch,et al.  High performance stencil code generation with Lift , 2018, CGO.

[25]  Jungkyun Shin,et al.  3D Laplace-domain full waveform inversion using a single GPU card , 2014, Comput. Geosci..

[26]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[27]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[28]  Ru-Shan Wu,et al.  Seismic envelope inversion and modulation signal model , 2014 .

[29]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[30]  Gordon Erlebacher,et al.  High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster , 2010, J. Comput. Phys..

[31]  D. F. Shanno,et al.  Matrix conditioning and nonlinear optimization , 1978, Math. Program..

[32]  P. Sadayappan,et al.  High-performance code generation for stencil computations on GPU architectures , 2012, ICS '12.

[33]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[34]  Baoli Wang,et al.  RTM using effective boundary saving: A staggered grid GPU implementation , 2014, Comput. Geosci..

[35]  Dimitri Komatitsch,et al.  Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards , 2010 .

[36]  Toshifumi Matsuoka,et al.  Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit , 2011 .

[37]  Changsoo Shin,et al.  Waveform inversion using a logarithmic wavefield , 2006 .

[38]  David W. Nellans,et al.  Towards high performance paged memory for GPUs , 2016, 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).

[39]  R. Pratt Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .

[40]  Sergei Gorlatch,et al.  High-Level Programming of Stencil Computations on Multi-GPU Systems Using the SkelCL Library , 2014, Parallel Process. Lett..

[41]  Wim A. Mulder,et al.  Velocity analysis based on data correlation , 2008 .