Structures and structure functions in the inertial range of turbulence

The deviations from the Kolmogorov 1941 laws of inertial range of turbulence are investigated using the results from the direct numerical simulations of an unforced flow starting from a high-symmetry initial condition by Kida [J. Phys. Soc. Jpn. 54, 2132 (1985)]. The resolution is 3003 points (12003 with symmetries, maximum wavenumber 400 after dealiasing), and the Taylor scale Reynolds number is in the order of 100. The scaling exponents of the pth order longitudinal and lateral structure function (for p between 2 and 16) are computed using different methods with particular focus on a recent method by Benzi and collaborators [Phys. Rev. E 48, R29 (1993); Europhys. Lett. 32, 709 (1995)]. Both longitudinal and lateral scaling exponents deviate considerably from Kolmogorov 1941 (K-41) scaling laws, the lateral deviating much more than the longitudinal. A systematic methodology (strain–enstrophy state) is developed to relate the K-41 deviations to different structures in the field. Enstrophy-dominated struct...

[1]  Bérengère Dubrulle,et al.  Fully developed turbulence: a unifying point of view , 1995 .

[2]  J. Gani,et al.  Statistical Models and Turbulence. , 1972 .

[3]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[4]  Roberto Benzi,et al.  On the scaling of three-dimensional homogeneous and isotropic turbulence , 1995 .

[5]  Shiyi Chen,et al.  On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence , 1993 .

[6]  O. Boratav On recent intermittency models of turbulence , 1997 .

[7]  S. Kida,et al.  Statistics of velocity gradients in turbulence at moderate Reynolds numbers , 1989 .

[8]  R. Benzi Advances in Turbulence V , 1995 .

[9]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[10]  K. Sreenivasan On the universality of the Kolmogorov constant , 1995 .

[11]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Shigeo Kida,et al.  Log-Stable Distribution and Intermittency of Turbulence , 1991 .

[13]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[14]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[15]  Raffaele Tripiccione,et al.  Extended self-similarity in the dissipation range of fully developed turbulence , 1993 .

[16]  S. Orszag Numerical Simulation of Incompressible Flows Within Simple Boundaries. I. Galerkin (Spectral) Representations , 1971 .

[17]  On the local topology evolution of a high‐symmetry flow , 1995 .

[18]  Steven A. Orszag,et al.  Numerical Simulation of the Taylor-Green Vortex , 1973, Computing Methods in Applied Sciences and Engineering.

[19]  Robert McDougall Kerr,et al.  Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.

[20]  A. Pouquet,et al.  Model of intermittency in magnetohydrodynamic turbulence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Uriel Frisch,et al.  A simple dynamical model of intermittent fully developed turbulence , 1978, Journal of Fluid Mechanics.

[22]  A. N. Kolmogorov On the degeneration of isotropic turbulence in an incompressible viscous fluid , 1941 .

[23]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[24]  Javier Jiménez,et al.  The structure of intense vorticity in isotropic turbulence , 1993, Journal of Fluid Mechanics.

[25]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[26]  Steven A. Orszag,et al.  Structure and dynamics of homogeneous turbulence: models and simulations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  L. Andrews,et al.  A statistical theory for the distribution of energy dissipation in intermittent turbulence , 1989 .

[28]  A. Kerstein,et al.  Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .

[29]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[30]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .

[31]  G. S. Patterson,et al.  Numerical simulation of turbulence , 1972 .

[32]  Richard B. Pelz,et al.  DIRECT NUMERICAL SIMULATION OF TRANSITION TO TURBULENCE FROM A HIGH-SYMMETRY INITIAL CONDITION , 1994 .

[33]  Sreenivasan,et al.  Scaling of structure functions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[35]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[36]  S. Kida,et al.  Characterization of vortex tubes and sheets , 1993 .

[37]  Shigeo Kida,et al.  Three-dimensional periodic flows with high-symmetry , 1985 .

[38]  R. Benzi,et al.  On the Intermittent Energy Transfer at Viscous Scales in Turbulent Flows , 1995, Europhysics Letters (EPL).