Lateralization of bands of noise as a function of combinations of interaural intensive differences, interaural temporal differences, and bandwidth.

Listeners indicated the intracranial position of bands of noise (from 50 to 400 Hz in width) for several combinations of interaural intensive differences (IID), and interaural temporal differences (ITD), and/or interaural phase differences (IPD). All ITD and IPD combinations produced an interaural delay of 1500 microseconds at the center frequency of the noise. The interaural phase spectra were constructed to produce several patterns of putative cross-correlation functions. Potency of IIDs depended greatly on particular combinations of bandwidth, ITD and IPD. For some combinations, changing the IID by only 3 dB resulted in large shifts in laterality (sometimes moving the image from near one ear to near the other). The complex interactions observed make the results incompatible with the traditional notion that IIDs simply act as weights or scalars. Rather, IIDs act in two distinct manners: (1) as independent scalar quantities and (2) by interacting with specific combinations of bandwidth and ITD/IPD, which is believed to reflect an action within the cross correlation surface.