Power-Law Graph Cuts

Algorithms based on spectral graph cut objectives such as normalized cuts, ratio cuts and ratio association have become popular in recent years because they are widely applicable and simple to implement via standard eigenvector computations. Despite strong performance for a number of clustering tasks, spectral graph cut algorithms still suffer from several limitations: first, they require the number of clusters to be known in advance, but this information is often unknown a priori; second, they tend to produce clusters with uniform sizes. In some cases, the true clusters exhibit a known size distribution; in image segmentation, for instance, human-segmented images tend to yield segment sizes that follow a power-law distribution. In this paper, we propose a general framework of power-law graph cut algorithms that produce clusters whose sizes are power-law distributed, and also does not fix the number of clusters upfront. To achieve our goals, we treat the Pitman-Yor exchangeable partition probability function (EPPF) as a regularizer to graph cut objectives. Because the resulting objectives cannot be solved by relaxing via eigenvectors, we derive a simple iterative algorithm to locally optimize the objectives. Moreover, we show that our proposed algorithm can be viewed as performing MAP inference on a particular Pitman-Yor mixture model. Our experiments on various data sets show the effectiveness of our algorithms.

[1]  Longbing Cao,et al.  Non-parametric Power-law Data Clustering , 2013, ArXiv.

[2]  Kevin J. Lang Fixing two weaknesses of the Spectral Method , 2005, NIPS.

[3]  Michael I. Jordan,et al.  Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes , 2008, NIPS.

[4]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Michael I. Jordan,et al.  Revisiting k-means: New Algorithms via Bayesian Nonparametrics , 2011, ICML.

[6]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  N. Metropolis,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2017 .

[9]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[10]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[11]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[12]  Inderjit S. Dhillon,et al.  Weighted Graph Cuts without Eigenvectors A Multilevel Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[14]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[15]  Michael I. Jordan,et al.  MAD-Bayes: MAP-based Asymptotic Derivations from Bayes , 2012, ICML.

[16]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..