Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene

The extraordinary electronic properties of Dirac materials, the two-dimensional partners of Weyl semimetals, arise from the linear crossings in their band structure. When the dispersion around the Dirac points is tilted, the emergence of intricate transport phenomena has been predicted, such as modified Klein tunnelling, intrinsic anomalous Hall effects and ferrimagnetism. However, Dirac materials are rare, particularly with tilted Dirac cones. Recently, artificial materials whose building blocks present orbital degrees of freedom have appeared as promising candidates for the engineering of exotic Dirac dispersions. Here we take advantage of the orbital structure of photonic resonators arranged in a honeycomb lattice to implement photonic lattices with semi-Dirac, tilted and, most interestingly, type-III Dirac cones that combine flat and linear dispersions. The tilted cones emerge from the touching of a flat and a parabolic band with a non-trivial topological charge. These results open the way to the synthesis of orbital Dirac matter with unconventional transport properties and, in combination with polariton nonlinearities, to the study of topological and Dirac superfluids in photonic lattices.

[1]  Bert Bongers Creating , 2021, Understanding Interaction: The Relationships Between People, Technology, Culture, and the Environment.

[2]  Mattias Johnsson,et al.  Emergence of quantum correlations from interacting fibre-cavity polaritons , 2019, Nature Materials.

[3]  Y. Hu,et al.  Unconventional Flatband Line States in Photonic Lieb Lattices. , 2018, Physical review letters.

[4]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[5]  Hang Liu,et al.  Photoinduced Nonequilibrium Topological States in Strained Black Phosphorus. , 2018, Physical review letters.

[6]  C. Schneider,et al.  Quantum correlations of confined exciton-polaritons , 2018, 1805.04020.

[7]  G. Montambaux,et al.  Winding Vector: How to Annihilate Two Dirac Points with the Same Charge. , 2018, Physical review letters.

[8]  C. T. Chan,et al.  Type-II Dirac Photons at Metasurfaces. , 2018, Physical review letters.

[9]  Yuanjiang Xiang,et al.  Ideal Weyl points and helicoid surface states in artificial photonic crystal structures , 2018, Science.

[10]  D. Leykam,et al.  Artificial flat band systems: from lattice models to experiments , 2018, 1801.09378.

[11]  F. Liu,et al.  Black-hole horizon in the Dirac semimetal Zn2In2S5 , 2017, Physical Review B.

[12]  J. Charlier,et al.  Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion , 2017, Physical Review B.

[13]  D. Christodoulides,et al.  Emergence of Type-II Dirac Points in Graphynelike Photonic Lattices. , 2017, Physical review letters.

[14]  G. Weick,et al.  Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces , 2017, Nature Communications.

[15]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[16]  Z. Hang,et al.  Type-II Dirac photons , 2017, 1703.09899.

[17]  G. Volovik,et al.  Type-III and IV interacting Weyl points , 2017, JETP Letters.

[18]  B. Shapiro,et al.  Effect of the type-I to type-II Weyl semimetal topological transition on superconductivity , 2016, 1612.09048.

[19]  B. Min,et al.  Experimental Realization of Type-II Dirac Fermions in a PdTe_{2} Superconductor. , 2016, Physical review letters.

[20]  Shih‐Yang Lin,et al.  Tilted anisotropic Dirac cones in partially hydrogenated graphene , 2016 .

[21]  Kevin P. Chen,et al.  Experimental observation of optical Weyl points and Fermi arc-like surface states , 2016, Nature Physics.

[22]  G. Volovik Black hole and hawking radiation by type-II Weyl fermions , 2016, 1610.00521.

[23]  J. Bloch,et al.  Exciton-polaritons in lattices: A non-linear photonic simulator , 2016 .

[24]  T. Ozawa,et al.  Orbital Edge States in a Photonic Honeycomb Lattice. , 2016, Physical review letters.

[25]  G. Refael,et al.  Photocurrents in Weyl semimetals , 2016, 1607.07839.

[26]  D. Basko,et al.  Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor , 2016, Nature Communications.

[27]  A. Hemmerich,et al.  Topological Varma Superfluid in Optical Lattices. , 2016, Physical review letters.

[28]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[29]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[30]  M. S. Skolnick,et al.  Spin Textures of Exciton-Polaritons in a Tunable Microcavity with Large TE-TM Splitting. , 2015, Physical review letters.

[31]  H. Choi,et al.  Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus , 2015, Science.

[32]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[33]  Fan Zhang,et al.  Structured Weyl Points in Fulde-Ferrell Superfluids , 2015 .

[34]  Kenji Watanabe,et al.  Creating and probing electron whispering-gallery modes in graphene , 2015, Science.

[35]  I. Sagnes,et al.  Edge states in polariton honeycomb lattices , 2015, 1504.05761.

[36]  Fan Zhang,et al.  Structured Weyl Points in Spin-Orbit Coupled Fermionic Superfluids. , 2014, Physical review letters.

[37]  D. Solnyshkov,et al.  Polariton Z topological insulator. , 2014, Physical review letters.

[38]  I. Sagnes,et al.  Spin-Orbit Coupling for Photons and Polaritons in Microstructures , 2014, 1406.4816.

[39]  Gil Refael,et al.  Topological Polaritons , 2014, 1406.4156.

[40]  R. Moessner,et al.  Occurrence of nematic, topological, and Berry phases when a flat and a parabolic band touch , 2014, 1402.6532.

[41]  A Lemaître,et al.  Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. , 2013, Physical review letters.

[42]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[43]  Alexander Szameit,et al.  Topological creation and destruction of edge states in photonic graphene , 2012, CLEO: 2013.

[44]  G. Montambaux,et al.  Topological transition of Dirac points in a microwave experiment. , 2012, Physical review letters.

[45]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[46]  G. Montambaux,et al.  Manipulation of Dirac points in graphene-like crystals , 2012, 1203.1262.

[47]  G. Montambaux,et al.  Bloch-Zener oscillations across a merging transition of Dirac points. , 2012, Physical review letters.

[48]  Tilman Esslinger,et al.  Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice , 2011, Nature.

[49]  A. Lemaître,et al.  Polariton condensation in photonic molecules. , 2011, Physical review letters.

[50]  E. Fradkin,et al.  Topological insulators and nematic phases from spontaneous symmetry breaking in 2D fermi systems with a quadratic band crossing. , 2009, Physical review letters.

[51]  G. Montambaux,et al.  Merging of Dirac points in a two-dimensional crystal , 2009, 0904.2117.

[52]  M. Soljačić,et al.  Effective theory of quadratic degeneracies , 2008, 0803.1854.

[53]  G. Montambaux,et al.  Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF) 2 I 3 , 2008, 0803.0912.

[54]  S. Das Sarma,et al.  p x , y -orbital counterpart of graphene: Cold atoms in the honeycomb optical lattice , 2007, 0712.4284.

[55]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[56]  S. Sarma,et al.  Flat bands and Wigner crystallization in the honeycomb optical lattice. , 2007, Physical review letters.

[57]  A. Kobayashi,et al.  Pressure-Induced Zero-Gap Semiconducting State in Organic Conductor α-(BEDT-TTF)2I3 Salt , 2006, cond-mat/0601068.

[58]  Shirley,et al.  Brillouin-zone-selection effects in graphite photoelectron angular distributions. , 1995, Physical review. B, Condensed matter.

[59]  Zeng,et al.  Quantum dimer calculations on the spin-1/2 kagome-acute Heisenberg antiferromagnet. , 1995, Physical review. B, Condensed matter.

[60]  K. Burnett Atom-Photon Interactions Basic Processes and Applications , 1992 .

[61]  C. cohen-tannoudji,et al.  Atom-Photon Interactions: Basic Processes and Applications , 1992 .