Exploring the Depth Range for Three-dimensional Laser Machining with Aberration Correction References and Links

The spherical aberration generated when focusing from air into another medium limits the depth at which ultrafast laser machining can be accurately maintained. We investigate how the depth range may be extended using aberration correction via a liquid crystal spatial light modulator (SLM), in both single point and parallel multi-point fabrication in fused silica. At a moderate numerical aperture (NA = 0.5), high fidelity fabrication with a significant level of parallelisation is demonstrated at the working distance of the objective lens, corresponding to a depth in the glass of 2.4 mm. With a higher numerical aperture (NA = 0.75) objective lens, single point fabrication is demonstrated to a depth of 1 mm utilising the full NA, and deeper with reduced NA, while maintaining high repeatability. We present a complementary theoretical model that enables prediction of the effectiveness of SLM based correction for different aberration magnitudes.

I. M. Burakov | J. Parry | J. Shephard | P. Corkum | A. Jesacher | K. Sugioka | Y. Bellouard | R. Juškaitis | S. Leon-Saval | R. Stoian | I. Hertel | M. Booth | M. Withford | G. von Freymann | N. Bellini | I. Cristiani | A. Boukenter | K. Midorikawa | M. Schmidt | A. Waddie | P. Paié | M. Baum | P. Salter | E. Simova | É. Audouard | V. R. Bhardwaj | P. Minzioni | M J Booth | G. R. Booker | I. Alexeev | B. Prade | S. Tzortzakis | Z. Laczik | N. Jovanovic | B. Lamouroux | P S Salter | M Baum | I Alexeev | M Schmidt | H. Xu | A. de la Cruz | R. Taylor | A. Mermillod-Blondin | P. Varga | S. Landon | I. Myiamoto | D. P. Hand | T. Birks | A. Couairon | A. Mysyrowicz | M. Baum | I. Alexeev | M. Schmidt | M. Booth | E. R. R. Gattass | Mazur | K. K. M. Davis | N. Miura | K. Sugimoto | Hirao | H Zhang | S. Eaton | P. Herman | R R Thomson | A. K. Kar | J. Bland-Hawthorn | T Meany | S. Gross | A. Arriola | M. J. Steel | F He | Y. Cheng | J. Ni | H. Xiong | Z. Xu | F Bragheri | R. M. Vazquez | C. Mondello | R. Ramponi | R. Osel | B Lenssen | M J Booth | M. Neil | T. Wilson | N Huot | C. Mauclair | V Diez-Blanco | J. Siegel | A. Ferrer | J. Solis | C Hnatovsky | D. M. Rayner | C Mauclair | N. Huot | A. Rosenfeld | B P Cumming | M. Gu | E H Waller | M. Renner | A Jesacher | Botcherby | G. E. Turner | S. Schroder-Turk | B. Debbarma | M. Luther-Davies | Gu | Adaptive | Salter | Z. Iqbal | R J Beck | W. N. Macpherson | N. J. Weston | R D Simmonds | G. D. Marshall | P Torok | E Toratani | M. Kamata | M. Obara | K Mishchik | G. Cheng | G. Huo | Y. Ouer-Dane | O. Parriaux | L Sudrie | M. Franco | Femtosecond | Thomson

[1]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[2]  P. Corkum,et al.  High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations , 2005 .

[3]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[4]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[5]  M. Obara,et al.  Self-fabrication of void array in fused silica by femtosecond laser processing , 2005 .

[6]  Andrew Waddie,et al.  Application of cooled spatial light modulator for high power nanosecond laser micromachining. , 2010, Optics express.

[7]  Nemanja Jovanovic,et al.  Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm , 2014 .

[8]  Georg von Freymann,et al.  Active aberration- and point-spread-function control in direct laser writing. , 2012, Optics express.

[9]  T. Wilson,et al.  An optical technique for remote focusing in microscopy , 2008 .

[10]  Martin J. Booth,et al.  Analysis of the Three-Dimensional Focal Positioning Capability of Adaptive Optic Elements , 2013 .

[11]  Roberto Osellame,et al.  Micromachining of photonic devices by femtosecond laser pulses , 2008 .

[12]  Koji Sugioka,et al.  Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. , 2010, Optics Letters.

[13]  Alexander Jesacher,et al.  Three dimensional laser microfabrication in diamond using a dual adaptive optics system. , 2011, Optics express.

[14]  I. M. Burakov,et al.  Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica. , 2010, Optics express.

[15]  Alexander Jesacher,et al.  Adaptive optics for direct laser writing with plasma emission aberration sensing. , 2010, Optics express.

[16]  Tony Wilson,et al.  New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Jan Siegel,et al.  Deep subsurface waveguides with circular cross section produced by femtosecond laser writing , 2007 .

[18]  F. Bragheri,et al.  Optofluidic integrated cell sorter fabricated by femtosecond lasers. , 2012, Lab on a chip.

[19]  A. Couairon,et al.  Femtosecond laser-induced damage and filamentary propagation in fused silica. , 2002, Physical review letters.

[20]  R. Piestun,et al.  Aperiodic Volume Optics , 2010 .

[21]  Alexander Jesacher,et al.  Parallel direct laser writing in three dimensions with spatially dependent aberration correction. , 2010, Optics express.

[22]  M. Booth,et al.  Focussing over the edge: adaptive subsurface laser fabrication up to the sample face. , 2012, Optics express.

[23]  Andreas Tünnermann,et al.  Ultrastable bonding of glass with femtosecond laser bursts. , 2013, Applied optics.

[24]  Alexander Jesacher,et al.  Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. , 2011, Optics express.

[25]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[26]  S. Juodkazis,et al.  Effect of refractive index-mismatch on laser microfabrication in silica glass , 2003 .

[27]  E Audouard,et al.  Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses. , 2011, Optics letters.

[28]  T. Wilson,et al.  Aberration correction for confocal imaging in refractive‐index‐mismatched media , 1998 .

[29]  E Audouard,et al.  Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass. , 2007, Optics express.

[30]  Benjamin P Cumming,et al.  Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. , 2014, Optics express.

[31]  Peter R Herman,et al.  Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. , 2007, Optics letters.

[32]  Yves Bellouard,et al.  Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching , 2012 .

[33]  Peter Török,et al.  Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation , 1995 .

[34]  E Audouard,et al.  Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. , 2008, Optics express.