One-dimensional interpenetrated coordination polymers showing step gas sorption properties

Two one-dimensional interpenetrated coordination polymers involving Cu2+ and 2,2′-bpy were reported with an adsorption step phenomenon by CO2 adsorption. The two materials have the similar channel structures, but show the different adsorption step phenomenon, which lies in the differences of structure transformation after activation.

[1]  Qiang Zhao,et al.  Adsorption CO2, CH4 and N2 on two different spacing flexible layer MOFs , 2012 .

[2]  赵强,et al.  氢气在Na-MAZ和Li-MAZ沸石原子簇上的吸附 , 2011 .

[3]  S. Noro,et al.  Rational Construction of Wide Coordination Space and Control of Adsorption Properties in One-Dimensional Cu(II) Coordination Polymer , 2011 .

[4]  Kenichi Kato,et al.  Control of interpenetration for tuning structural flexibility influences sorption properties. , 2010, Angewandte Chemie.

[5]  A. C. Kathalikkattil,et al.  Structural Investigation of Metal-Organic Cu(II) Coordination Frameworks Constructed from N-donor and α, ω-Dicarboxylate Ligands by One Pot Synthesis: Zigzag Strands, Layered Networks and Its Interaction with Lattice Water Molecules , 2010 .

[6]  Keiji Nakagawa,et al.  Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. , 2010, Nature chemistry.

[7]  J. Bai,et al.  Hierarchically Micro- and Mesoporous Coordination Polymer Nanostructures with High Adsorption Performance , 2010 .

[8]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[9]  K. Chapman,et al.  Pressure-induced amorphization and porosity modification in a metal-organic framework. , 2009, Journal of the American Chemical Society.

[10]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[11]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[12]  Kimoon Kim,et al.  Temperature-triggered gate opening for gas adsorption in microporous manganese formate. , 2008, Chemical communications.

[13]  Tatsuo C. Kobayashi,et al.  Kinetic gate-opening process in a flexible porous coordination polymer. , 2008, Angewandte Chemie.

[14]  H. Verelst,et al.  Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47. , 2008, Journal of the American Chemical Society.

[15]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[16]  Kunlun Hong,et al.  Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. , 2008, Journal of the American Chemical Society.

[17]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[18]  Hong-Cai Zhou,et al.  Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. , 2007, Inorganic chemistry.

[19]  S. Bhatia,et al.  Determination of Pore Accessibility in Disordered Nanoporous Materials , 2007 .

[20]  C. Serre,et al.  How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.

[21]  M. W. George,et al.  A porous framework polymer based on a zinc(II) 4,4'-bipyridine-2,6,2',6'-tetracarboxylate: synthesis, structure, and "zeolite-like" behaviors. , 2006, Journal of the American Chemical Society.

[22]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[23]  Tapas Kumar Maji,et al.  Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation. , 2005, Journal of the American Chemical Society.

[24]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[25]  M. P. Suh,et al.  Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2]. , 2005, Journal of the American Chemical Society.

[26]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.

[27]  Tatsuo C. Kobayashi,et al.  Guest shape-responsive fitting of porous coordination polymer with shrinkable framework. , 2004, Journal of the American Chemical Society.

[28]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[29]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[30]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[31]  Xiao‐Ming Chen,et al.  Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. , 2002, Chemistry.

[32]  K. Seki Dynamic channels of a porous coordination polymer responding to external stimuli , 2002 .

[33]  R. Gorte,et al.  Methods for Characterizing Zeolite Acidity , 1995 .

[34]  Artur Makarewicz,et al.  Electronic Supplementary Material ( ESI ) for ChemComm , 2015 .

[35]  A. Corma,et al.  On the Preferential Location of Al and Proton Siting in Zeolites: A Computational and Infrared Study , 2002 .