A simulated parameter optimization method–based manifold learning for a production process

[1]  Zhiqiang Ge,et al.  Sensor fault identification and isolation for multivariate non-Gaussian processes , 2009 .

[2]  Bogdan Raducanu,et al.  Embedding new observations via sparse-coding for non-linear manifold learning , 2014, Pattern Recognit..

[3]  Ebroul Izquierdo,et al.  Discriminant Pairwise Local Embeddings , 2013, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[4]  Hui Xu,et al.  Two-dimensional supervised local similarity and diversity projection , 2010, Pattern Recognit..

[5]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[6]  Zhihuan Song,et al.  Improved PCA-SVDD based monitoring method for nonlinear process , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[7]  Tao Chen,et al.  Nonlinear process monitoring and fault isolation using extended maximum variance unfolding , 2014 .

[8]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[9]  Xinbo Gao,et al.  Stable Orthogonal Local Discriminant Embedding for Linear Dimensionality Reduction , 2013, IEEE Transactions on Image Processing.

[10]  Anil K. Jain,et al.  Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  P. Sreeraj,et al.  Optimization of GMAW Process Parameters Using Particle Swarm Optimization , 2013 .

[12]  Junwu Zhou,et al.  Robust dynamic process monitoring based on sparse representation preserving embedding , 2016 .

[13]  Xuefeng Yan,et al.  Independent component analysis-based non-Gaussian process monitoring with preselecting optimal components and support vector data description , 2014 .

[14]  Ali Heidari,et al.  Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations , 2012, Journal of advanced research.

[15]  C. L. Lin,et al.  Optimisation of the EDM Process Based on the Orthogonal Array with Fuzzy Logic and Grey Relational Analysis Method , 2002 .

[16]  Xizhao Wang,et al.  Local similarity and diversity preserving discriminant projection for face and handwriting digits recognition , 2012, Neurocomputing.

[17]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[18]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[19]  Hasan Kurtaran,et al.  Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm , 2005 .

[20]  Holger Schwender,et al.  Imputing Missing Genotypes with Weighted k Nearest Neighbors , 2012, Journal of toxicology and environmental health. Part A.

[21]  Bogdan Raducanu,et al.  A supervised non-linear dimensionality reduction approach for manifold learning , 2012, Pattern Recognit..

[22]  Deli Zhao,et al.  Linear local tangent space alignment and application to face recognition , 2007, Neurocomputing.

[23]  George W. Irwin,et al.  Improved Nonlinear PCA for Process Monitoring Using Support Vector Data Description , 2011 .

[24]  Lei Zhang,et al.  A multi-manifold discriminant analysis method for image feature extraction , 2011, Pattern Recognit..

[25]  Jianbo Yu,et al.  Semiconductor Manufacturing Process Monitoring Using Gaussian Mixture Model and Bayesian Method With Local and Nonlocal Information , 2012, IEEE Transactions on Semiconductor Manufacturing.

[26]  Chudong Tong,et al.  Statistical process monitoring based on orthogonal multi-manifold projections and a novel variable contribution analysis. , 2016, ISA transactions.