Computational singular perturbation analysis of stochastic chemical systems with stiffness

Abstract Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

[1]  N. Peters,et al.  Reduced Kinetic Mechanisms for Applications in Combustion Systems , 1993 .

[2]  Tamás Turányi,et al.  On the error of the quasi-steady-state approximation , 1993 .

[3]  K. Lu,et al.  Invariant manifolds for stochastic wave equations , 2007 .

[4]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[5]  H. Najm,et al.  Analysis of NO structure in a methane–air edge flame , 2009 .

[6]  N. Berglund,et al.  Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach , 2005 .

[7]  Mauro Valorani,et al.  Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock , 2001 .

[8]  G. Yin,et al.  Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. , 2016, The Journal of chemical physics.

[9]  Habib N. Najm,et al.  Structure of n-heptane/air triple flames in partially-premixed mixing layers , 2011 .

[10]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[11]  P. Kloeden,et al.  The Numerical Approximation of Stochastic Partial Differential Equations , 2009 .

[12]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[13]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[14]  A. Fogelson,et al.  Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. , 2001, Biophysical journal.

[15]  K. Lu,et al.  INVARIANT FOLIATIONS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2008 .

[16]  M. Mavrovouniotis,et al.  Simplification of Mathematical Models of Chemical Reaction Systems. , 1998, Chemical reviews.

[17]  L. Arnold Random Dynamical Systems , 2003 .

[18]  F. Williams Combustion theory : the fundamental theory of chemically reacting flow systems , 2018 .

[19]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[20]  Habib N. Najm,et al.  Model Reduction and Physical Understanding of Slowly Oscillating Processes: The Circadian Cycle , 2006, Multiscale Model. Simul..

[21]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[22]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[23]  H. Najm,et al.  Reactive and reactive-diffusive time scales in stiff reaction-diffusion systems , 2005 .

[24]  Epaminondas Mastorakos,et al.  Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data , 1999 .

[25]  T. M. Sugden,et al.  Photometric investigations of alkali metals in hydrogen flame gases IV. Thermal and chemiluminescent effects produced by free radicals , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Zhuyin Ren,et al.  The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics. , 2006, The Journal of chemical physics.

[27]  N. Berglund,et al.  Geometric singular perturbation theory for stochastic differential equations , 2002 .

[28]  Dimitris A. Goussis,et al.  Asymptotic Solution of Stiff PDEs with the CSP Method: The Reaction Diffusion Equation , 1998, SIAM J. Sci. Comput..

[29]  T. M. Sugden,et al.  Photometric investigations of alkali metals in hydrogen flame gases III. The source of the alkali metal continuum , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  Habib N. Najm,et al.  Skeletal mechanism generation and analysis for n-heptane with CSP , 2007 .

[31]  Marcos Chaos,et al.  Computational singular perturbation analysis of two-stage ignition of large hydrocarbons. , 2006, The journal of physical chemistry. A.

[32]  Peter Benner,et al.  Lyapunov Equations, Energy Functionals, and Model Order Reduction of Bilinear and Stochastic Systems , 2011, SIAM J. Control. Optim..

[33]  Tianfeng Lu,et al.  Linear time reduction of large kinetic mechanisms with directed relation graph: N-Heptane and iso-octane , 2006 .

[34]  Qing Nie,et al.  An integration factor method for stochastic and stiff reaction-diffusion systems , 2015, J. Comput. Phys..

[35]  Peter Benner,et al.  Model reduction for stochastic systems , 2015 .

[36]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[37]  Silvana Ilie,et al.  Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics. , 2015, The Journal of chemical physics.

[38]  Mauro Valorani,et al.  An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems , 2006, J. Comput. Phys..

[39]  Robert W. Dibble,et al.  Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation , 1996 .

[40]  Michael J. Davis,et al.  Geometric investigation of low-dimensional manifolds in systems approaching equilibrium , 1999 .

[41]  Erik I. Verriest,et al.  Time Variant Balancing and Nonlinear Balanced Realizations , 2008 .

[42]  Samuel Paolucci,et al.  On slow manifolds of chemically reactive systems , 2002 .

[43]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[44]  B. Schmalfuß Inertial Manifolds for Random Differential Equations , 2005 .

[45]  Biao Huang,et al.  Model Reduction of Uncertain Systems with Multiplicative Noise Based on Balancing , 2006, SIAM J. Control. Optim..

[46]  Ramon Grima,et al.  Model reduction for stochastic chemical systems with abundant species. , 2015, The Journal of chemical physics.

[47]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[48]  Björn Schmalfuss,et al.  Invariant Manifolds for Random Dynamical Systems with Slow and Fast Variables , 2008 .

[49]  Habib N. Najm,et al.  An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP , 2006 .

[50]  J. Keck Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems☆ , 1990 .

[51]  James C. Keck,et al.  Rate-controlled constrained equilibrium calculation of ignition delay times in hydrogen-oxygen mixtures , 1989 .

[52]  Habib N. Najm,et al.  A CSP and tabulation-based adaptive chemistry model , 2007 .

[53]  Fabian Mauss,et al.  Comparison of automatic reduction procedures for ignition chemistry , 2002 .

[54]  Tatsuo Shibata,et al.  Reducing the master equations for noisy chemical reactions , 2003 .

[55]  Habib N. Najm,et al.  Analysis of methane–air edge flame structure , 2010 .

[56]  T. M. Sugden,et al.  Photometric investigations of alkali metals in hydrogen flame gases - II. The study of excess concentrations of hydrogen atoms in burnt gas mixtures , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  J. A. M. Janssen,et al.  The elimination of fast variables in complex chemical reactions. II. Mesoscopic level (reducible case) , 1989 .

[58]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[59]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[60]  Jinqiao Duan,et al.  Smooth Stable and Unstable Manifolds for Stochastic Evolutionary Equations , 2004, math/0409483.

[61]  Jinqiao Duan,et al.  INVARIANT MANIFOLDS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2003, math/0409485.

[62]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[63]  C. Law,et al.  Complex CSP for chemistry reduction and analysis , 2001 .

[64]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[65]  Dimitris A. Goussis,et al.  Quasi steady state and partial equilibrium approximations: their relation and their validity , 2012 .

[66]  Habib N. Najm,et al.  Skeletal mechanism generation with CSP and validation for premixed n-heptane flames , 2009 .

[67]  Yiannis N Kaznessis,et al.  An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. , 2005, The Journal of chemical physics.

[68]  I. Isaksen,et al.  Quasi‐steady‐state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction , 1978 .

[69]  Mauro Valorani,et al.  The G-Scheme: A framework for multi-scale adaptive model reduction , 2009, J. Comput. Phys..

[70]  Radek Erban,et al.  ADM-CLE Approach for Detecting Slow Variables in Continuous Time Markov Chains and Dynamic Data , 2015, SIAM J. Sci. Comput..

[71]  H. Najm,et al.  Chemical kinetics mechanism simplification via CSP , 2005 .

[72]  T. Caraballo,et al.  Invariant Manifolds for Random and Stochastic Partial Differential Equations , 2009, 0901.0382.

[73]  Alison S. Tomlin,et al.  The error of the quasi steady-state approximation in spatially distributed systems , 1996 .

[74]  D. Gillespie The chemical Langevin equation , 2000 .

[75]  Mary E. Kloc,et al.  Smooth Hamiltonian Systems with Soft Impacts , 2013, SIAM J. Appl. Dyn. Syst..

[76]  Habib N. Najm,et al.  Computational singular perturbation with non-parametric tabulation of slow manifolds for time integration of stiff chemical kinetics , 2012 .

[77]  J. Goutsias Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. , 2005, The Journal of chemical physics.

[78]  Habib N. Najm,et al.  Dynamical Structures in Stochastic Chemical Reaction Systems , 2014, SIAM J. Appl. Dyn. Syst..

[79]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[80]  M. Bodenstein,et al.  Die photochemische Bildung von Bromwasserstoff und die Bildungsgeschwindigkeit der Brommolekel aus den Atomen , 1924 .

[81]  J. A. M. Janssen,et al.  The elimination of fast variables in complex chemical reactions. III. Mesoscopic level (irreducible case) , 1989 .

[82]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[83]  A. Fersht Enzyme structure and mechanism , 1977 .

[84]  Dimitris A. Goussis,et al.  On the Construction and Use of Reduced Chemical Kinetic Mechanisms Produced on the Basis of Given Algebraic Relations , 1996 .