Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth

In a typical optical tweezers detection system, the position of a trapped object is determined from laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of silicon, they can act together as an unintended low-pass filter. This parasitic effect is due to the high transparency of silicon to near-infrared light. A simple model that accounts for this phenomenon [Berg-Sorensen et al., J. Appl. Phys. 93, 3167 (2003)] is here solved for frequencies up to 100kHz and for laser wavelengths between 750 and 1064nm. The solution is applied to experimental data in the same range, and is demonstrated to give this detection system of optical tweezers a bandwidth, accuracy, and precision that are limited only by the data acquisition board’s bandwidth and bandpass ripples, here 96.7kHz and 0.005dB, respectively.

[1]  F. MacKintosh,et al.  Short-time inertial response of viscoelastic fluids: observation of vortex propagation. , 2005, Physical review letters.

[2]  Kirstine Berg-Sorensen,et al.  Parasitic filtering in position detection systems for optical tweezers , 2004, SPIE Optics + Photonics.

[3]  I. Tolic-Nørrelykke,et al.  Anomalous diffusion in living yeast cells. , 2004, Physical review letters.

[4]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[5]  E. Peterman,et al.  Extending the bandwidth of optical-tweezers interferometry , 2003 .

[6]  Lene B. Oddershede,et al.  Unintended filtering in a typical photodiode detection system for optical tweezers , 2003 .

[7]  Joshua W Shaevitz,et al.  An automated two-dimensional optical force clamp for single molecule studies. , 2002, Biophysical journal.

[8]  C. Yang,et al.  Ion-beam-induced-charge characterisation of particle detectors , 2002 .

[9]  F. MacKintosh,et al.  Microrheology of biopolymer-membrane complexes. , 2000, Physical review letters.

[10]  M. Bartoo,et al.  The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. , 1998, Biophysical journal.

[11]  Miriam W. Allersma,et al.  Two-dimensional tracking of ncd motility by back focal plane interferometry. , 1998, Biophysical journal.

[12]  F. MacKintosh,et al.  Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations , 1997, cond-mat/9709228.

[13]  William H. Press,et al.  Numerical recipes , 1990 .

[14]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[15]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[16]  G. Lutz,et al.  Semiconductor Radiation Detectors , 2007 .

[17]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[18]  A. Mehta,et al.  Reflections of a lucid dreamer: optical trap design considerations. , 1998, Methods in cell biology.

[19]  C. Schmidt,et al.  Signals and noise in micromechanical measurements. , 1998, Methods in cell biology.

[20]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[21]  N. C. Barford Experimental Measurements: Precision, Error and Truth , 1967 .

[22]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .