A Prey Catching and Predator Avoidance Neural-Schema Architecture for Single and Multiple Robots

The paper presents a biologically inspired multi-level neural-schema architecture for prey catching and predator avoidance in single and multiple autonomous robotic systems. The architecture is inspired on anuran (frogs and toads) neuroethological studies and wolf pack group behaviors. The single robot architecture exploits visuomotor coordination models developed to explain anuran behavior in the presence of preys and predators. The multiple robot architecture extends the individual prey catching and predator avoidance model to experiment with group behavior. The robotic modeling architecture distinguishes between higher-level schemas representing behavior and lower-level neural structures representing brain regions. We present results from single and multiple robot experiments developed using the NSL/ASL/MIRO system and Sony AIBO ERS-210 robots.

[1]  J. Ewert Advances in vertebrate neuroethology , 1982, Trends in Neurosciences.

[2]  J.-P. Ewert,et al.  Command neurons and command systems , 1998 .

[3]  Michael A. Arbib,et al.  Neuroscience: From Neural Networks to Artificial Intelligence , 1993, Research Notes in Neural Computing.

[4]  B. Webb What does robotics offer animal behaviour? , 2000, Animal Behaviour.

[5]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[6]  J. -P. Ewert,et al.  Configurational prey-selection by individual experience in the toadBufo bufo , 2004, Journal of comparative physiology.

[7]  Michael A. Arbib,et al.  Neural mechanisms of visuomotor coordination: the evolution of Rana computatrix , 1991 .

[8]  F. Cervantes-Pérez,et al.  Modulatory effects on Prey-Recognition in Amphibia: A Theoretical-Experimental study , 1993 .

[9]  J. Ewert,et al.  Neuroethology , 1980, Springer Berlin Heidelberg.

[10]  A. Weitzenfeld,et al.  A Biologically-Inspired Wolf Pack Multiple Robot Hunting Model , 2006, 2006 IEEE 3rd Latin American Robotics Symposium.

[11]  B. Kosko,et al.  Visual Structures and Integrated Functions , 1991, Research Notes in Neural Computing.

[12]  A. Weitzenfeld ASL : Hierarchy , Composition , Heterogeneity , and Multi-Granularity in Concurrent Object-Oriented Programming , 1993 .

[13]  L. Mech,et al.  The Wolf: The Ecology and Behavior of an Endangered Species , 1970 .

[14]  F. Cervantes-Pérez,et al.  Modulation of prey-catching behavior in toads: data and modeling , 1991 .

[15]  Ronald C. Arkin,et al.  Behavioral models of the praying mantis as a basis for robotic behavior , 2000, Robotics Auton. Syst..

[16]  D. Ingle Brain Mechanisms of Visual Localization by Frogs and Toads , 1983 .

[17]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1997, Auton. Robots.

[18]  J. Ewert,et al.  Visuomotor Coordination: Amphibians, Comparisons, Models, and Robots , 1989 .

[19]  Thomas S. Collett PICKING A ROUTE: DO TOADS FOLLOW RULES OR MAKE PLANS? , 1983 .

[20]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[21]  O. Grüsser,et al.  Neurophysiology of the Anuran Visual System , 1976 .

[22]  Alfredo Weitzenfeld,et al.  NSL/ASL: Distributed Simulation of Modular Neural Networks , 2000, MICAI.

[23]  Stuart C. Shapiro,et al.  Encyclopedia of artificial intelligence, vols. 1 and 2 (2nd ed.) , 1992 .

[24]  B. Betts The toad optic tectum as a recurrent on-center off-surround neural net with quenching threshold , 1988, IEEE 1988 International Conference on Neural Networks.

[25]  N. Venkatasubramanian,et al.  MIRO : An Embedded Distributed Architecture for Biologically inspired Mobile Robots , 2003 .

[26]  M. Arbib,et al.  A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads , 2004, Biological Cybernetics.

[27]  Alfredo Weitzenfeld,et al.  Bio-inspired Model of Robot Adaptive Learning and Mapping , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  M. Arbib,et al.  Prey-catching and predator avoidance 2: modeling the medullary hemifield deficit , 1991 .

[29]  DeLiang Wang,et al.  A Neural Model of Synaptic Plasticity Underlying Short-term and Long-term Habituation , 1993, Adapt. Behav..

[30]  M. Arbib,et al.  A model of anuran retina relating interneurons to ganglion cell responses , 2004, Biological Cybernetics.

[31]  Michael A. Arbib,et al.  Port Automata and the Algebra of Concurrent Processes , 1983, J. Comput. Syst. Sci..

[32]  H. Vanegas,et al.  Comparative neurology of the optic tectum , 1984 .

[33]  K. Fite,et al.  A retinotopic analysis of the central connections of the optic nerve in the frog , 1974, The Journal of comparative neurology.

[34]  R. Didday A model of visuomotor mechanisms in the frog optic tectum , 1976 .

[35]  George A. Bekey,et al.  AUTONOMOUS ROBOTS, From Biological Inspiration to Implementation and Control, by G.A. Bekey, MIT Press, 2005, xv + 577 pp., index, ISBN 0-262-02578-7, 25 pages of references (Hb. £35.95) , 2005, Robotica.

[36]  M. Arbib Levels of modeling of mechanisms of visually guided behavior , 1987, Behavioral and Brain Sciences.

[37]  Michael A. Arbib,et al.  Prey-catching and predator avoidance 1: maps and schemas , 1991 .

[38]  Ronald C. Arkin,et al.  Neuroscience in Motion: The Application of Schema Theory to Mobile Robotics , 1989 .

[39]  Alfredo Weitzenfeld,et al.  From schemas to neural networks: A multi-level modelling approach to biologically-inspired autonomous robotic systems , 2008, Robotics Auton. Syst..

[40]  Ronald C. Arkin,et al.  Local navigation strategies for a team of robots , 2003, Robotica.

[41]  Alfredo Weitzenfeld,et al.  Multi-Agent Formations in a Herd of Wolves Hunting Model , 2005 .

[42]  D. Ingle,et al.  Comparative Neurology of the Optic Tectum edited by Horacio Vanegas, Plenum Press, 1984. $125.00 (xx + 850 pages) ISBN 0 306 41236 5 , 1985, Trends in Neurosciences.

[43]  Michael A. Arbib,et al.  Learning to Detour , 1995, Adapt. Behav..

[44]  A Cobas,et al.  Prey-catching and predator-avoidance in frog and toad: defining the schemas. , 1992, Journal of theoretical biology.

[45]  Michael A. Arbib,et al.  The Neural Simulation Language: A System for Brain Modeling , 2002 .

[46]  J. Ewert Tectal Mechanisms That Underlie Prey-Catching and Avoidance Behaviors in Toads , 1984 .

[47]  M. Arbib,et al.  A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. , 1985, Journal of theoretical biology.

[48]  Lynne E. Parker,et al.  Current State of the Art in Distributed Autonomous Mobile Robotics , 2000 .

[49]  Michael A. Arbib,et al.  Schema theory , 1998 .

[50]  Tucker R. Balch,et al.  Motor Schema-Based Formation Control for Multiagent Robot Teams , 1995, ICMAS.

[51]  Francisco J. Cervantes,et al.  NSL/ASL: simulation of neural based visuomotor systems , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).