The interface of electronic structure and dynamics for reactions in solution

[1]  Donald G. Truhlar,et al.  Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries , 1998 .

[2]  D. Truhlar,et al.  Variational transition-state theory and semiclassical tunnelling calculations with interpolated corrections: a new approach to interfacing electronic structure theory and dynamics for organic reactions , 1994 .

[3]  B. C. Garrett,et al.  A least‐action variational method for calculating multidimensional tunneling probabilities for chemical reactions , 1983 .

[4]  M. Gordon,et al.  From Force Fields to Dynamics: Classical and Quantal Paths , 1990, Science.

[5]  D. Truhlar,et al.  Reaction-Path Dynamics in Redundant Internal Coordinates , 1998 .

[6]  Donald G. Truhlar,et al.  POLYRATE 4: A new version of a computer program for the calculation of chemical reaction rates for polyatomics , 1992 .

[7]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[8]  Michael Baer,et al.  Theory of chemical reaction dynamics , 1985 .

[9]  Jean-Louis Rivail,et al.  Liquid-State Quantum Chemistry: Computational Applications of the Polarizable Continuum Models , 1996 .

[10]  Emili Besalú,et al.  Analysis of the changes on the potential energy surface of Menshutkin reactions induced by external perturbations , 1996 .

[11]  Donald G. Truhlar,et al.  Interpolated Variational Transition-State Theory by Mapping , 1998 .

[12]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[13]  B. C. Garrett,et al.  Variational transition state theory and tunneling for a heavy–light–heavy reaction using an ab initio potential energy surface. 37Cl+H(D) 35Cl→H(D) 37Cl+35Cl , 1983 .

[14]  M. Basilevsky,et al.  Calculation of the rate constant for the reaction chloride + chloromethane .fwdarw. ClCH3 + Cl- in the framework of the continuum medium model , 1993 .

[15]  B. C. Garrett,et al.  Tunneling in the Presence of a Bath: A Generalized Transition State Theory Approach , 1994 .

[16]  F. B. Brown,et al.  The Representation and use of Potential Energy Surfaces in the Wide Vicinity of a Reaction Path for Dynamics Calculations on Polyatomic Reactions , 1986 .

[17]  Thanh N. Truong,et al.  A general methodology for quantum modeling of free-energy profile of reactions in solution: An application to the Menshutkin NH3+CH3Cl reaction in water , 1997 .

[18]  Àngels González-Lafont,et al.  Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions , 1993 .

[19]  Donald G. Truhlar,et al.  A simple approximation for the vibrational partition function of a hindered internal rotation , 1991 .

[20]  J. Bertrán,et al.  Variational transition state theory and tunneling calculations with reorientation of the generalized transition states for methyl cation transfer , 1998 .

[21]  P. Paneth,et al.  Kinetic isotope effects on the Menshutkin reaction: Theory versus experiment , 1996 .

[22]  D. Truhlar Potential Energy Surfaces and Dynamics Calculations , 1981 .

[23]  Donald G. Truhlar,et al.  Direct Dynamics Method for the Calculation of Reaction Rates , 1995 .

[24]  Michael Page,et al.  On evaluating the reaction path Hamiltonian , 1988 .

[25]  Jean-Louis Rivail,et al.  Analytical energy derivatives for a realistic continuum model of solvation: Application to the analysis of solvent effects on reaction paths , 1996 .

[26]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[27]  B. C. Garrett,et al.  Inclusion of nonequilibrium continuum solvation effects in variational transition state theory , 1993 .

[28]  R. Marcus,et al.  Dynamics of hydrogen atom and proton transfer reactions. Symmetric case , 1981 .

[29]  Donald G. Truhlar,et al.  Improved Dual-Level Direct Dynamics Method for Reaction Rate Calculations with Inclusion of Multidimensional Tunneling Effects and Validation for the Reaction of H with trans-N2H2 , 1997 .

[30]  Kent R. Wilson,et al.  Nonequilibrium solvation effects on reaction rates for model SN2 reactions in water , 1989 .

[31]  S. Shaik,et al.  Is the avoided crossing state a good approximation for the transition state of a chemical reaction? An analysis of Menschutkin and ionic SN2 reactions , 1994 .

[32]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[33]  Donald G. Truhlar,et al.  Improved treatment of threshold contributions in variational transition-state theory , 1980 .

[34]  Àngels González-Lafont,et al.  MORATE: a program for direct dynamics calculations of chemical reaction rates by semiempirical molecular orbital theory , 1993 .

[35]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[36]  M. Karelson,et al.  Semiempirical study of the solvent effect on the Menshutkin reaction , 1994 .

[37]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[38]  K. Morokuma,et al.  Potential Energy Characteristics for Chemical Reactions , 1981 .

[39]  C. Cramer,et al.  Entropic contributions to free energies of solvation , 1994 .

[40]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[41]  Donald G. Truhlar,et al.  Generalized transition state theory calculations for the reactions D+H2 and H+D2 using an accurate potential energy surface: Explanation of the kinetic isotope effect , 1980 .

[42]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[43]  J. Bertrán,et al.  Transition structures of the Friedel–Crafts reaction in solution , 1994 .

[44]  Jiali Gao,et al.  A two-dimensional energy surface for a type II SN2 reaction in aqueous solution , 1993 .

[45]  M. Karelson,et al.  A gas phase ab initio study of the Menshutkin reaction , 1997 .

[46]  Donald G. Truhlar,et al.  Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene , 1993 .

[47]  D. Truhlar,et al.  Effect of nonequilibrium solvation on chemical reaction rates. Variational transition-state-theory studies of the microsolvated reaction Cl-(H2O)n + CH3Cl , 1990 .

[48]  B. C. Garrett,et al.  Variational transition state theory for activated chemical reactions in solution , 1994 .

[49]  Rudolph A. Marcus,et al.  Analytical Mechanics of Chemical Reactions. III. Natural Collision Coordinates , 1968 .