Both starvation and outflows drive galaxy quenching

Star-forming galaxies can in principle be transformed into passive systems by a multitude of processes that quench star formation, such as the halting of gas accretion (starvation) or the rapid removal of gas in AGN-driven outflows. However, it remains unclear which processes are the most significant, primary drivers of the SF-passive bimodality. We address this key issue in galaxy evolution by studying the chemical properties of 80 000 local galaxies in Sloan Digital Sky Survey Data Release 7. In order to distinguish between different quenching mechanisms, we analyse the stellar metallicities of star-forming, green valley, and passive galaxies. We find that the significant difference in stellar metallicity between passive galaxies and their star-forming progenitors implies that for galaxies at all masses, quenching must have involved an extended phase of starvation. However, some form of gas ejection also has to be introduced into our models to best match the observed properties of local passive galaxies, indicating that, while starvation is likely to be the prerequisite for quenching, it is the combination of starvation and outflows that is responsible for quenching the majority of galaxies. Closed-box models indicate that the duration of the quenching phase is 2–3 Gyr, with an e-folding time of 2–4 Gyr, after which further star formation is prevented by an ejective/heating mode. Alternatively, leaky-box models find a longer duration for the quenching phase of 5–7 Gyr and an e-folding time of ∼1 Gyr, with outflows becoming increasingly important with decreasing stellar mass. Finally, our analysis of local green valley galaxies indicates that quenching is slower in the local Universe than at high redshift.

[1]  J. Sánchez Almeida,et al.  The Fundamental Metallicity Relation Emerges from the Local Anti-correlation between Star Formation Rate and Gas-phase Metallicity that Exists in Disk Galaxies , 2019, The Astrophysical Journal.

[2]  B. Garilli,et al.  The VANDELS survey: the stellar metallicities of star-forming galaxies at $\mathbf {2.5\,\, \lt\,\, z\,\, \lt\,\, 5.0}$ , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  R. Maiolino,et al.  Metallicity calibrations for diffuse ionized gas and low-ionization emission regions , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  C. Maraston,et al.  Modelling the mass-metallicity relation of star-forming galaxies from z ∼ 3.5 to z ∼ 0 , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  R. Maiolino,et al.  Cold Molecular Outflows in the Local Universe and Their Feedback Effect on Galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  D. Goddard,et al.  SDSS-IV MaNGA: Modelling the Metallicity Gradients of Gas and Stars – Radially Dependent Metal Outflow Versus IMF , 2018, 1802.06793.

[7]  J. Brownstein,et al.  SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane , 2018, 1802.01819.

[8]  Annalisa Pillepich,et al.  Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation , 2017, 1711.11039.

[9]  J. Brinkmann,et al.  Stellar population properties for 2 million galaxies from SDSS DR14 and DEEP2 DR4 from full spectral fitting , 2017, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[10]  V. Springel,et al.  The evolution of the mass-metallicity relation and its scatter in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[11]  D. Goddard,et al.  Firefly (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code , 2017, 1711.00865.

[12]  J. Comparat,et al.  The mass–metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF , 2017, 1710.11135.

[13]  Daniel Thomas,et al.  SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies , 2017, 1710.05034.

[14]  L. Cortese,et al.  ALMA Shows that Gas Reservoirs of Star-forming Disks over the Past 3 Billion Years Are Not Predominantly Molecular , 2017, 1709.07933.

[15]  B. Andrews,et al.  Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate , 2017, 1708.07107.

[16]  B. Groves,et al.  The SAMI Galaxy Survey: global stellar populations on the size–mass plane , 2017, 1708.06849.

[17]  G. Mamon,et al.  On stellar mass loss from galaxies in groups and clusters , 2017, 1707.06264.

[18]  C. Steinhardt,et al.  A Massive Dead Disk Galaxy in the Young Universe , 2017, Nature.

[19]  A. Fontana,et al.  CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies , 2017, 1705.01946.

[20]  D. Elbaz,et al.  Insights on star-formation histories and physical properties of 1.2 <= z <~ 4 Herschel-detected galaxies , 2017, 1705.01174.

[21]  R. Bower,et al.  Galaxy metallicity scaling relations in the EAGLE simulations , 2017, 1704.00006.

[22]  M. Bershady,et al.  SDSS IV MaNGA – metallicity and nitrogen abundance gradients in local galaxies , 2017, 1703.03813.

[23]  Claus Leitherer,et al.  The mass and momentum outflow rates of photoionized galactic outflows , 2017, 1702.07351.

[24]  O. Ilbert,et al.  Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift , 2017, 1702.04729.

[25]  B. Weiner,et al.  PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions , 2017, 1702.01140.

[26]  A. Coil,et al.  A massive, quiescent, population II galaxy at a redshift of 2.1 , 2016, Nature.

[27]  M. Bershady,et al.  SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment , 2016, 1612.01545.

[28]  D. Bizyaev,et al.  SDSS-IV MaNGA: environmental dependence of stellar age and metallicity gradients in nearby galaxies , 2016, 1612.01523.

[29]  M. Bershady,et al.  SDSS-IV MaNGA : spatially resolved star formation histories in galaxies as a function of galaxy mass and type , 2016, 1612.01546.

[30]  R. Bender,et al.  Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ∼ 1–2 , 2016, 1611.07524.

[31]  C. Frenk,et al.  Tidal features of classical Milky Way satellites in a Λ cold dark matter universe. , 2016, 1611.00778.

[32]  B. Groves,et al.  GAS FRACTION AND DEPLETION TIME OF MASSIVE STAR-FORMING GALAXIES AT z ∼ 3.2: NO CHANGE IN GLOBAL STAR FORMATION PROCESS OUT TO z > 3 , 2016, 1610.03656.

[33]  P. Hopkins,et al.  MUFASA: Galaxy star formation, gas, and metal properties across cosmic time , 2016, 1610.01626.

[34]  M. Bershady,et al.  SDSS IV MaNGA - the spatially resolved transition from star formation to quiescence , 2016, 1609.01737.

[35]  L. Hunt,et al.  Coevolution of metallicity and star formation in galaxies to z=3.7: I. A fundamental plane , 2016, 1608.05417.

[36]  L. Hunt,et al.  Coevolution of metallicity and star formation in galaxies to z ≃ 3.7 - II. A theoretical model , 2016, 1608.05418.

[37]  M. Colless,et al.  Giant Metrewave Radio Telescope observations of neutral atomic hydrogen gas in the COSMOS field at z ∼ 0.37 , 2016, 1605.02006.

[38]  M. Boylan-Kolchin,et al.  Under pressure: quenching star formation in low-mass satellite galaxies via stripping , 2016, 1606.07810.

[39]  F. Mannucci,et al.  New fully empirical calibrations of strong-line metallicity indicators in star forming galaxies , 2016, 1610.06939.

[40]  F. Vincenzo,et al.  New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies , 2016, 1605.05603.

[41]  R. Maiolino,et al.  Nitrogen and oxygen abundances in the Local Universe , 2016, 1603.00460.

[42]  P. Capak,et al.  ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES AT Z ≃ 3.3 FROM NEAR-IR SPECTROSCOPY , 2016, 1602.02779.

[43]  R. Bower,et al.  The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations , 2015, 1510.08067.

[44]  A. Cimatti,et al.  Old age and supersolar metallicity in a massive z ∼ 1.4 early-type galaxy from VLT/X-Shooter spectroscopy , 2015, 1509.04000.

[45]  R. Bower,et al.  Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass–metallicity relation , 2015, 1507.08281.

[46]  C. Leitherer,et al.  THE SYSTEMATIC PROPERTIES OF THE WARM PHASE OF STARBURST-DRIVEN GALACTIC WINDS , 2015, 1507.05622.

[47]  A. Quirrenbach,et al.  The CALIFA survey across the Hubble sequence: Spatially resolved stellar population properties in galaxies , 2015, 1506.04157.

[48]  Iafe,et al.  The evolution of galaxy metallicity scaling relations in cosmological hydrodynamical simulations , 2015, 1506.02772.

[49]  R. Maiolino,et al.  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[50]  Northwestern,et al.  The origin and evolution of the galaxy mass–metallicity relation , 2015, 1504.02097.

[51]  Timothy D. Brandt,et al.  THE AGE AND AGE SPREAD OF THE PRAESEPE AND HYADES CLUSTERS: A CONSISTENT, ∼800 Myr PICTURE FROM ROTATING STELLAR MODELS , 2015, 1504.00004.

[52]  R. Maiolino,et al.  Modern yields per stellar generation: the effect of the IMF , 2015, 1503.08300.

[53]  M. Boylan-Kolchin,et al.  Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS , 2015, 1503.06803.

[54]  Andrew King,et al.  Powerful Outflows and Feedback from Active Galactic Nuclei , 2015, 1503.05206.

[55]  A. Renzini,et al.  AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES , 2015, 1502.01027.

[56]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[57]  U. Padova,et al.  THE AGES, METALLICITIES, AND ELEMENT ABUNDANCE RATIOS OF MASSIVE QUENCHED GALAXIES AT z ≃ 1.6 ?> , 2014, 1411.5023.

[58]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[59]  L. Kewley,et al.  The SAMI Galaxy Survey: Instrument specification and target selection , 2014, 1407.7335.

[60]  C. Carollo,et al.  On the relation between specific star formation rate and metallicity , 2014 .

[61]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[62]  C. Carollo,et al.  On the relation between sSFR and metallicity , 2014, 1403.6146.

[63]  G. Graves,et al.  THE ASSEMBLY HISTORIES OF QUIESCENT GALAXIES SINCE z = 0.7 FROM ABSORPTION LINE SPECTROSCOPY , 2014, 1403.4932.

[64]  H. Hoekstra,et al.  THE PHASE SPACE AND STELLAR POPULATIONS OF CLUSTER GALAXIES AT z ∼ 1: SIMULTANEOUS CONSTRAINTS ON THE LOCATION AND TIMESCALE OF SATELLITE QUENCHING , 2014, 1402.7077.

[65]  R. Maiolino,et al.  From haloes to Galaxies – I. The dynamics of the gas regulator model and the implied cosmic sSFR history , 2014, 1402.5964.

[66]  M. Boylan-Kolchin,et al.  The surprising inefficiency of dwarf satellite quenching , 2014, 1402.1498.

[67]  M. Boquien,et al.  Cold gas properties of the Herschel Reference Survey - I. 12CO(1–0) and HI data , 2014, 1401.7773.

[68]  F. Mannucci,et al.  The evolution of the dust and gas content in galaxies , 2013, 1311.3670.

[69]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[70]  A. Dekel,et al.  On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations , 2013, 1311.1509.

[71]  G. Kauffmann,et al.  Dilution in elliptical galaxies: implications for the relation between metallicity, stellar mass and star formation rate , 2013, 1310.5151.

[72]  L. Kewley,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. II. THE MASS–METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION , 2013, 1310.4950.

[73]  I. Smail,et al.  A fundamental metallicity relation for galaxies at z = 0.84–1.47 from HiZELS , 2013, 1309.0506.

[74]  R. Somerville,et al.  Evolution of the atomic and molecular gas content of galaxies , 2013, 1308.6764.

[75]  C. Carollo,et al.  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[76]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[77]  A. Macciò,et al.  The dependence of tidal stripping efficiency on the satellite and host galaxy morphology , 2012, 1212.3408.

[78]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[79]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[80]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[81]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[82]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[83]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[84]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[85]  James S. Dunlop,et al.  The physics of the fundamental metallicity relation , 2012, 1202.4770.

[86]  F. Mannucci,et al.  Stellar metallicity of star-forming galaxies at z ~ 3 , 2011, 1112.2403.

[87]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[88]  F. Mannucci,et al.  The metallicity properties of zCOSMOS galaxies at 0.2 < z < 0.8 , 2011, 1110.4408.

[89]  C. Maraston,et al.  Stellar population models at high spectral resolution , 2011, 1109.0543.

[90]  Carnegie,et al.  CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCE z = 0.7 , 2011, Proceedings of the International Astronomical Union.

[91]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[92]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[93]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[94]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[95]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[96]  B. Gibson,et al.  Star formation history of barred disc galaxies , 2011, 1103.3796.

[97]  Durham,et al.  The Dawn of the Red: star formation histories of group galaxies over the past 5 billion years , 2010, 1012.2388.

[98]  A. Kravtsov,et al.  FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS , 2010, 1011.1252.

[99]  L. Kewley,et al.  THE MASS–METALLICITY AND LUMINOSITY–METALLICITY RELATIONS FROM DEEP2 AT z ∼ 0.8 , 2010, 1006.4877.

[100]  M. S'anchez-Portal,et al.  A fundamental plane for field star-forming galaxies , 2010, 1005.0509.

[101]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[102]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[103]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[104]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[105]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[106]  G. Brammer,et al.  THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5 , 2009, 0910.2227.

[107]  A. Heavens,et al.  A PUBLIC CATALOG OF STELLAR MASSES, STAR FORMATION AND METALLICITY HISTORIES, AND DUST CONTENT FROM THE SLOAN DIGITAL SKY SURVEY USING VESPA , 2009, 0904.1001.

[108]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[109]  J. Ostriker,et al.  FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. I. MODELS WITH EITHER RADIATIVE OR MECHANICAL FEEDBACK BUT NOT BOTH , 2009, 0901.1089.

[110]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[111]  J. Prochaska,et al.  ON THE (NON)EVOLUTION OF H i GAS IN GALAXIES OVER COSMIC TIME , 2008, 0811.2003.

[112]  A. Heavens,et al.  The cosmic evolution of metallicity from the SDSS fossil record , 2008, 0804.3091.

[113]  R. Maiolino,et al.  A deep X‐ray observation of M82 with XMM–Newton , 2008, 0802.2943.

[114]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[115]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 . I. The stellar metallicity , 2008, 0801.1193.

[116]  P. Prugniel,et al.  Spectroscopic ages and metallicities of stellar populations : validation of full spectrum fitting , 2008, 0801.0871.

[117]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[118]  A. McConnachie,et al.  Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.

[119]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[120]  Heidelberg,et al.  A census of metals and baryons in stars in the local universe , 2007, 0708.0533.

[121]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[122]  F. Matteucci,et al.  The formation of the [alpha/Fe] radial gradients in the stars of elliptical galaxies , 2007, 0706.2932.

[123]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[124]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[125]  A. Heavens,et al.  Recovering galaxy star formation and metallicity histories from spectra using VESPA , 2007, 0704.0941.

[126]  J. Ostriker,et al.  Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas , 2007, astro-ph/0703057.

[127]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[128]  R. Peletier,et al.  Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.

[129]  Vienna,et al.  A new formulation of the Type Ia supernova rate and its consequences on galactic chemical evolution , 2006, astro-ph/0607504.

[130]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[131]  Robert D. Gehrz,et al.  On Extending the Mass-Metallicity Relation of Galaxies by 2.5 Decades in Stellar Mass , 2006, astro-ph/0605036.

[132]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[133]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[134]  C. Chiappini,et al.  The Outside-In Formation of Elliptical Galaxies , 2005, astro-ph/0510556.

[135]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[136]  Nikolay,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005, The Astrophysical Journal Supplement Series.

[137]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[138]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[139]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method , 2005 .

[140]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[141]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[142]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[143]  U. Toronto,et al.  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[144]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[145]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[146]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[147]  F. Matteucci,et al.  Photochemical evolution of elliptical galaxies – I. The high-redshift formation scenario , 2003, astro-ph/0310251.

[148]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[149]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[150]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[151]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[152]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[153]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[154]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[155]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[156]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[157]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[158]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[159]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[160]  R. Bower,et al.  Ram pressure stripping of spiral galaxies in clusters , 1999, astro-ph/9903436.

[161]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[162]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[163]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[164]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[165]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .

[166]  J. Sérsic Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[167]  M. Schmidt The Rate of Star Formation , 1959 .

[168]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[169]  E. Salpeter The Luminosity function and stellar evolution , 1955 .