Laser cooling and control of excitations in superfluid helium

It takes extreme sensitivity to measure the elementary excitations in liquid helium-4. An optomechanical cavity with a thin film of superfluid inside can be used to both observe and control phonons in real time.

[1]  Warwick P. Bowen,et al.  Microphotonic Forces From Superfluid Flow , 2015, 1512.07704.

[2]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[3]  K. R. Atkins Third and Fourth Sound in Liquid Helium II , 1959 .

[4]  T. Kippenberg,et al.  Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat. , 2013, The Review of scientific instruments.

[5]  K. C. Schwab,et al.  Superfluid optomechanics: coupling of a superfluid to a superconducting condensate , 2013, 1308.2164.

[6]  D. Stamper-Kurn,et al.  Optically measuring force near the standard quantum limit , 2013, Science.

[7]  Matthew J. Davis,et al.  Emergence of order from turbulence in an isolated planar superfluid. , 2014, Physical review letters.

[8]  P. McClintock,et al.  Decay of quantized vorticity in superfluid 4He at mK temperatures , 2000 .

[9]  M. Aspelmeyer,et al.  Silicon optomechanical crystal resonator at millikelvin temperatures , 2014 .

[10]  J. Chevrier,et al.  3 0 Se p 20 08 Mechanical mode dependence of bolometric back-action in an AFM microlever , 2008 .

[11]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[12]  Feedback-enhanced sensitivity in optomechanics: Surpassing the parametric instability barrier , 2011, 1109.2381.

[13]  Mochel,et al.  Atomically thin superfluid helium films on solid hydrogen. , 1991, Physical review letters.

[14]  M. Sillanpää,et al.  Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. , 2015, Physical review letters.

[15]  W. Vinen,et al.  An Introduction to Quantum Turbulence , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  M. Metcalfe Applications of cavity optomechanics , 2014 .

[17]  Vortex-phonon interaction , 2005, cond-mat/0505020.

[18]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[19]  Halina Rubinsztein-Dunlop,et al.  Ultrasensitive Optomechanical Magnetometry , 2014, Advanced materials.

[20]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[21]  F. Ritort,et al.  The nonequilibrium thermodynamics of small systems , 2005 .

[22]  G. Agarwal,et al.  Theory of optomechanical interactions in superfluid He , 2014, 1406.2248.

[23]  E. Pike,et al.  Brillouin scattering from superfluid 4He , 1970 .

[24]  Sahand Hormoz,et al.  Direct observation of Kelvin waves excited by quantized vortex reconnection , 2014, Proceedings of the National Academy of Sciences.

[25]  J. Teufel,et al.  Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object , 2015, Physical review. X.

[26]  Yao Sun,et al.  Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging , 2018, Chemical science.

[27]  R. Packard,et al.  A Model for Third Sound Attenuation in Thick 4He Films , 2002 .

[28]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[29]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[30]  D. Bishop,et al.  Study of the Superfluid Transition in Two-Dimensional He-4 Films , 1978 .

[31]  Bernhard Keimer,et al.  Neutron scattering from quantum condensed matter. , 2014, Nature materials.

[32]  Luo,et al.  Observation of the persistent-current splitting of a third-sound resonator. , 1989, Physical review. B, Condensed matter.

[33]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[34]  Joshua A. Slater,et al.  Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.

[35]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[36]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[37]  A. Clerk,et al.  Quantum squeezing of motion in a mechanical resonator , 2015, Science.

[38]  J. Hoffmann,et al.  Measurements of Attenuation of Third Sound: Evidence of Trapped Vorticity in Thick Films of Superfluid 4He , 2004 .

[39]  W. Bowen Quantum Optomechanics , 2015, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[40]  R. Feynman Superfluidity and Superconductivity , 1957 .