Machine Learning @ Amazon

In this talk, I will first provide an overview of key problem areas where we are applying Machine Learning (ML) techniques within Amazon such as product demand forecasting, product search, and information extraction from reviews, and associated technical challenges. I will then talk about three specific applications where we use a variety of methods to learn semantically rich representations of data: question answering where we use deep learning techniques, product size recommendations where we use probabilistic models, and fake reviews detection where we use tensor factorization algorithms. I will point out the computing challenges associated with these applications and how parallelism can be exploited to scale to large datasets.