Evaluation of Biotechnologies for Flexible Pavement Applications

[1]  M. Nemati,et al.  Modification of porous media permeability, using calcium carbonate produced enzymatically in situ , 2003 .

[2]  C. H. Clarke Mutation Research, Problems, Results and Perspectives , 1977 .

[3]  George D. O. Okwadha,et al.  Optimum conditions for microbial carbonate precipitation. , 2010, Chemosphere.

[4]  Mauricio Sánchez-Silva,et al.  Biodeterioration of Construction Materials: State of the Art and Future Challenges , 2008 .

[5]  R. Tyrrell,et al.  Induction of oxygen-dependent lethal damage by monochromatic UVB (313 nm) radiation: strand breakage, repair and cell death. , 1983, Carcinogenesis.

[6]  Robert E. Newnham,et al.  Molecular Mechanisms in Smart Materials , 1997 .

[7]  Shengting Li,et al.  A laboratory study of the effects of bio-stabilization on geomaterials , 2013 .

[8]  E. Kavazanjian,et al.  Carbonate Mineral Precipitation for Soil Improvement Through Microbial Denitrification , 2011 .

[9]  M. Merz,et al.  Biology of carbonate precipitation by cyanobacteria , 1992 .

[10]  Sheng Tang Asphalt modification by utilizing bio-oil ESP and tall oil additive , 2010 .

[11]  M. Elimelech,et al.  Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation. , 1998, Journal of colloid and interface science.

[12]  S. Silver,et al.  Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli , 1975, Journal of bacteriology.

[13]  E. Witkin Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli , 1976 .

[14]  G. Muyzer,et al.  Application of bacteria as self-healing agent for the development of sustainable concrete , 2010 .

[15]  R. Christopher Williams,et al.  Temperature and Shear Susceptibility of a Nonpetroleum Binder as a Pavement Material , 2010 .

[16]  J. Braams,et al.  Biodeterioration of stone: a review , 2000 .

[17]  H. J. Hueck,et al.  The biodeterioration of materials—an appraisal , 2001 .

[18]  Alaa Chateauneuf,et al.  Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures , 2008 .

[19]  Klaus S. Lackner,et al.  Carbon dioxide disposal in carbonate minerals , 1995 .

[20]  H. Kaltwasser,et al.  Control of urease formation in certain aerobic bacteria , 2004, Archiv für Mikrobiologie.

[21]  S. Bang,et al.  Remediation of Concrete Using Micro-Organisms , 2001 .

[22]  John E. Haddock,et al.  Rheological characterization of asphalt binders modified with soybean fatty acids , 2014 .

[24]  Susanne Douglas,et al.  Mineral formation by bacteria in natural microbial communities , 1998 .

[25]  B. Chattopadhyay,et al.  Use of microorganism to improve the strength of cement mortar , 2005 .

[26]  Bijoy Krishna Halder,et al.  Sustainable disposal of brine , 2012 .

[27]  Bruno Bujoli,et al.  Alternative Binder from Microalgae: Algoroute Project , 2012 .

[28]  J. Chu,et al.  Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ , 2008 .

[29]  R. Frankel,et al.  Biologically Induced Mineralization by Bacteria , 2003 .

[30]  Natalia Belkova Biomineralization in natural environments : the effect of microorganisms inhabiting hot spring water and biomats on mineral formation , 2004 .

[31]  Victoria S. Whiffin,et al.  Microbial Carbonate Precipitation as a Soil Improvement Technique , 2007 .

[32]  S. Castanier,et al.  Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view , 1999 .

[33]  W. V. D. Zon,et al.  Biological in situ reinforcement of sand in near-shore areas , 2009 .

[34]  W. Verstraete,et al.  Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone , 2010 .

[35]  M. Loosdrecht,et al.  Potential soil reinforcement by biological denitrification , 2010 .

[36]  Hasan Ozer,et al.  Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder , 2011 .

[37]  S. Bang,et al.  Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control , 2011 .

[38]  Arthur E. Martell,et al.  Critical Stability Constants , 2011 .

[39]  B. Montoya,et al.  Bio-Mediated Soil Improvement and the Effect of Cementation on the Behavior, Improvement, and Performance of Sand , 2012 .

[40]  B. C. Martinez,et al.  Bio-mediated soil improvement , 2010 .

[41]  S. Bang,et al.  4843 - IMPROVEMENT OF CONCRETE DURABILITY BY BACTERIAL MINERAL PRECIPITATION , 2013 .

[42]  G. Slater,et al.  Assessing microbial carbon sources and potential PAH degradation using natural abundance 14C analysis. , 2013, Environmental pollution.

[43]  R. Burne,et al.  Bacterial ureases in infectious diseases. , 2000, Microbes and infection.

[44]  Woo-Young Chun,et al.  Calcite-forming bacteria for compressive strength improvement in mortar. , 2010, Journal of microbiology and biotechnology.

[45]  T. Naik,et al.  Biodeterioration of Concrete Structures in Coastal Zone , 2013 .

[46]  J. Warmington,et al.  Urease activity in microbiologically-induced calcite precipitation. , 2002, Journal of biotechnology.

[47]  A. Mukherjee,et al.  Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production , 2009, Journal of Industrial Microbiology & Biotechnology.

[48]  C. Gaylarde,et al.  Microbial impact on building materials: an overview , 2003 .

[49]  Yasuo Tanaka,et al.  Stress-deformation and compressibility responses of bio-mediated residual soils , 2013 .

[50]  W. Verstraete,et al.  Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species , 2006, Biodegradation.