The Geometry of Negation

There are two natural ways of thinking about negation: (i) as a form of complementation and (ii) as an operation of reversal, or inversion (to deny that p is to say that things are “the other way around”). A variety of techniques exist to model conception (i), from Euler and Venn diagrams to Boolean algebras. Conception (ii), by contrast, has not been given comparable attention. In this note we outline a twofold geometric proposal, where the inversion metaphor is understoood as involving a rotation or a reflection, respectively. These two options are equivalent in classical two-valued logic but they differ significantly in many-valued logics. Here we show that they correspond to two basic sorts of negation operators— Post's and Kleene's—and we provide a simple group-theoretic argument demonstrating their generative power.

[1]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[2]  Melvin Fitting,et al.  Bilattices and the theory of truth , 1989, J. Philos. Log..

[3]  E. Stamm Beitrag zur algebra der Logik , 1911 .

[4]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[5]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[6]  R. Heller,et al.  © Macmillan , 1977 .

[7]  D. Gabbay,et al.  What is Negation , 1999 .

[8]  Jean-Yves Béziau,et al.  What is many-valued logic? , 1997, Proceedings 1997 27th International Symposium on Multiple- Valued Logic.

[9]  G. R. D. Lavalette Stanford, CSLI Publications (2001) , 2001 .

[10]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[11]  G. E. Moore,et al.  VI.—Symposium: “Facts and Propositions.” , 1927 .

[12]  Merrie Bergmann,et al.  On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus , 1981 .

[13]  Jaskowski,et al.  Polish Logic 1920-1939. , 1969 .

[14]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[15]  Laurence R. Horn A Natural History of Negation , 1989 .

[17]  W. Ackermann,et al.  von Wright G. H.. On double quantification. Societas Scientiarum Fennica, Commentationes physico-mathematicae, Bd. 16, Nr. 3. Helsingfors 1952, 14 S. , 1952, Journal of Symbolic Logic.

[18]  Roy A. Sorensen,et al.  Mirror notation: symbol manipulation without inscription manipulation , 1999, J. Philos. Log..

[19]  H. Wansing,et al.  Negation : a notion in focus , 1996 .

[20]  Jan Wolenski Polish Logic , 2004, Log. J. IGPL.

[21]  F. Ramsey,et al.  Facts and Propositions , 1927 .

[22]  Jaakko Hintikka,et al.  Logic, Language-Games And Information , 1972 .

[23]  G. Birkhoff,et al.  A survey of modern algebra , 1942 .

[24]  Melvin Fitting,et al.  Kleene's Logic, Generalized , 1991, J. Log. Comput..

[25]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .