ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult.

[1]  Morris F. Maduro,et al.  Structure and evolution of the C. elegans embryonic endomesoderm network. , 2009, Biochimica et biophysica acta.

[2]  B. Bass,et al.  A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes , 2008, Proceedings of the National Academy of Sciences.

[3]  Lucinda K. Southworth,et al.  An elt-3/elt-5/elt-6 GATA Transcription Circuit Guides Aging in C. elegans , 2008, Cell.

[4]  Thomas J. Nicholas,et al.  Automated analysis of embryonic gene expression with cellular resolution in C. elegans , 2008, Nature Methods.

[5]  B. Paw,et al.  Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins , 2008, Nature.

[6]  Erich Bornberg-Bauer,et al.  Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. , 2008, Immunobiology.

[7]  I. Hope,et al.  Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. , 2008, Briefings in functional genomics & proteomics.

[8]  N. V. Kirienko,et al.  Coordinated Regulation of Intestinal Functions in C. elegans by LIN-35/Rb and SLR-2 , 2008, PLoS genetics.

[9]  Jennifer M. A. Tullet,et al.  Direct Inhibition of the Longevity-Promoting Factor SKN-1 by Insulin-like Signaling in C. elegans , 2008, Cell.

[10]  L. Timmons,et al.  Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7 , 2008, Genetics.

[11]  C. Thacker,et al.  An Iron Enhancer Element in the FTN-1 Gene Directs Iron-dependent Expression in Caenorhabditis elegans Intestine* , 2008, Journal of Biological Chemistry.

[12]  J. Priess,et al.  Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans , 2007, Development.

[13]  Seung-Jae V. Lee,et al.  Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[14]  D. Moerman,et al.  Establishment of a tissue-specific RNAi system in C. elegans. , 2007, Gene.

[15]  Nektarios Tavernarakis,et al.  Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection , 2007, Genome Biology.

[16]  Steven J. M. Jones,et al.  High-Throughput In Vivo Analysis of Gene Expression in Caenorhabditis elegans , 2007, PLoS biology.

[17]  Steven J. M. Jones,et al.  The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. , 2007, Genes & development.

[18]  J. McGhee The C. elegans intestine. , 2007, WormBook : the online review of C. elegans biology.

[19]  H. Lehrach,et al.  A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling , 2007, Proceedings of the National Academy of Sciences.

[20]  Steven J. M. Jones,et al.  The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. , 2007, Developmental biology.

[21]  Allen D. Delaney,et al.  Large-scale production of SAGE libraries from microdissected tissues, flow-sorted cells, and cell lines. , 2006, Genome research.

[22]  N. Gaddis,et al.  GATA Transcription Factor Required for Immunity to Bacterial and Fungal Pathogens , 2006, PloS one.

[23]  R. Waterston,et al.  Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development. , 2006, Genes & development.

[24]  M. Ronen,et al.  A conserved role for a GATA transcription factor in regulating epithelial innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[25]  J. Watts,et al.  Genetic Regulation of Unsaturated Fatty Acid Composition in C. elegans , 2006, PLoS genetics.

[26]  D. Mangelsdorf,et al.  Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. , 2006, Developmental cell.

[27]  Cynthia Kenyon,et al.  Germ-Cell Loss Extends C. elegans Life Span through Regulation of DAF-16 by kri-1 and Lipophilic-Hormone Signaling , 2006, Cell.

[28]  Stuart K. Kim,et al.  Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans , 2005, Development.

[29]  Sarah Barber,et al.  A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Kunihiro Matsumoto,et al.  Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Nishida,et al.  The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. , 2005, Genes & development.

[32]  K. Yamamoto,et al.  A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Morris F. Maduro,et al.  Genetic redundancy in endoderm specification within the genus Caenorhabditis. , 2005, Developmental biology.

[34]  L. Schriefer,et al.  ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. , 2005, Molecular biology of the cell.

[35]  B. Oskouian,et al.  Regulation of Sphingosine-1-phosphate Lyase Gene Expression by Members of the GATA Family of Transcription Factors* , 2005, Journal of Biological Chemistry.

[36]  M. Krause,et al.  The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos , 2005, Development.

[37]  A. Coulson,et al.  Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans , 2005, Nature.

[38]  J. McGhee,et al.  Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. , 2005, Developmental biology.

[39]  K. Yamamoto,et al.  Nuclear Hormone Receptor NHR-49 Controls Fat Consumption and Fatty Acid Composition in C. elegans , 2005, PLoS biology.

[40]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[41]  F. Foufelle,et al.  SREBP transcription factors: master regulators of lipid homeostasis. , 2004, Biochimie.

[42]  S. Mango,et al.  Whole-Genome Analysis of Temporal Gene Expression during Foregut Development , 2004, PLoS biology.

[43]  Min Han,et al.  Monomethyl Branched-Chain Fatty Acids Play an Essential Role in Caenorhabditis elegans Development , 2004, PLoS biology.

[44]  B. Meissner,et al.  Deletion of the Intestinal Peptide Transporter Affects Insulin and TOR Signaling in Caenorhabditis elegans* , 2004, Journal of Biological Chemistry.

[45]  Jonathan Hodgkin,et al.  Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. , 2004, Molecular immunology.

[46]  O. Hobert,et al.  Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. , 2004, Developmental cell.

[47]  J. McGhee,et al.  The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. , 2004, Developmental biology.

[48]  Hinrich Schulenburg,et al.  Evolution of the innate immune system: the worm perspective , 2004, Immunological reviews.

[49]  K. Weber,et al.  Most genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis. , 2004, European journal of cell biology.

[50]  R. Branicky,et al.  Redox Regulation of Germline and Vulval Development in Caenorhabditis elegans , 2003, Science.

[51]  C. Kenyon,et al.  Tissue-Specific Activities of C. elegans DAF-16 in the Regulation of Lifespan , 2003, Cell.

[52]  K. Nehrke A Reduction in Intestinal Cell pHi Due to Loss of the Caenorhabditis elegans Na+/H+ Exchanger NHX-2 Increases Life Span* , 2003, Journal of Biological Chemistry.

[53]  J. McGhee,et al.  The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans. , 2003, Genetics.

[54]  T. Blackwell,et al.  SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. , 2003, Genes & development.

[55]  Cori Bargmann,et al.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans , 2003, Nature.

[56]  D. Slonim,et al.  Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome , 2003, Development.

[57]  Gary Ruvkun,et al.  Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes , 2003, Nature.

[58]  L. Avery,et al.  C elegans: a model for exploring the genetics of fat storage. , 2003, Developmental cell.

[59]  D L Riddle,et al.  Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. , 2003, Cold Spring Harbor symposia on quantitative biology.

[60]  J. Ewbank,et al.  Diverse Bacteria Are Pathogens of Caenorhabditis elegans , 2002, Infection and Immunity.

[61]  Morris F. Maduro,et al.  Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. , 2002, Developmental biology.

[62]  Joseph L Goldstein,et al.  SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. , 2002, The Journal of clinical investigation.

[63]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[64]  S. Mango,et al.  Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4 , 2002, Science.

[65]  Kathleen Marchal,et al.  A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling , 2001, Bioinform..

[66]  T. Oka,et al.  Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase. Cell-specific expression during development. , 2001, The Journal of biological chemistry.

[67]  J. McGhee,et al.  Activation of Hypodermal Differentiation in theCaenorhabditis elegans Embryo by GATA Transcription Factors ELT-1 and ELT-3 , 2001, Molecular and Cellular Biology.

[68]  Morris F. Maduro,et al.  Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. , 2001, Molecular cell.

[69]  J. Freedman,et al.  Aspartic Proteases from the Nematode Caenorhabditis elegans , 2000, The Journal of Biological Chemistry.

[70]  J. Collado-Vides,et al.  A web site for the computational analysis of yeast regulatory sequences , 2000, Yeast.

[71]  F. Slack,et al.  Expression and function of members of a divergent nuclear receptor family in Caenorhabditis elegans. , 1999, Developmental biology.

[72]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[73]  J. McGhee,et al.  Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. McGhee,et al.  ELT-3: A Caenorhabditis elegans GATA factor expressed in the embryonic epidermis during morphogenesis. , 1999, Developmental biology.

[75]  W. Yi,et al.  Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms. , 1999, Development.

[76]  J. McGhee,et al.  Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. , 1998, Genes & development.

[77]  J. McKerrow,et al.  Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. , 1998, Journal of molecular biology.

[78]  J. Collado-Vides,et al.  Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.

[79]  Min Han,et al.  A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis. , 1998, Genetics.

[80]  M. Labouesse,et al.  pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. , 1998, Genes & development.

[81]  J. McGhee,et al.  The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. , 1998, Developmental biology.

[82]  J. McGhee,et al.  pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx. , 1998, Development.

[83]  J. McGhee,et al.  pha-4 is Ce-fkh-1, a fork head/HNF-3 a , b , g homolog that functions in organogenesis of the C. elegans pharynx , 1998 .

[84]  R. J. Hill,et al.  end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. , 1997, Genes & development.

[85]  J. Claverie,et al.  The significance of digital gene expression profiles. , 1997, Genome research.

[86]  K. Millen,et al.  DNA-protein interactions in the Caenorhabditis elegans embryo: oocyte and embryonic factors that bind to the promoter of the gut-specific ges-1 gene. , 1994, Developmental biology.

[87]  J. Spieth,et al.  Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains , 1994, Molecular and cellular biology.

[88]  E. Candido,et al.  Expression of the polyubiquitin-encoding gene (ubq-1) in transgenic Caenorhabditis elegans. , 1992, Gene.

[89]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[90]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[91]  R. F.,et al.  Mathematical Statistics , 1944, Nature.