Importance of landscape variables and morphology on nutrients in Missouri reservoirs

The proportion of cropland cover in the catchments of Missouri reservoirs, a surrogate for non-point-source nutrient loss from agricultural watersheds, accounts for some 60%-70% of the cross-system variance in long-term aver- ages of total phosphorus and total nitrogen (n = 126, In transformation for nutrients and logit for cropland). The addi- tion of dam height and an index of flushing rate improved ? values to -77% for both nutrients. Even among reservoir catchments with >80% grass and forest cover, cropland accounted for most of the variation in nutrients. Reservoir nu- trients showed a strong negative relation to forest cover. Relations between grass cover and nutrients were positive but weak, and grass had no significant statistical effect once cropland was taken into account. Residual analysis suggests that urban reservoirs would have about twice the nutrient level of reservoirs in non-cropland basins (forest and grass). The increase in nutrients with the proportion of cropland and the decrease with forest cover have previously been doc- umented in Missouri streams. R6umB : La proportion des terres agricoles dans les bassins versants des reservoirs du Missouri, une variable de rem- placement pour les pertes diffuses de nutriments dans les bassins versants agricoles, explique environ 60 % - 70 % de la variances des quantites moyennes h long terme de phosphore total et d'azote total dans les bassins (n = 126, trans- formation In des valeurs de nutriments et transformation logit dans le cas des terres agricoles). L'addition de la hauteur des barrages et d'un indice de vidange ameliore les valeurs de ? h -77 % pour les deux variables de nutriments. MCme dans les bassins versants de reservoirs avec >80 % de couverture de prairie ou de for&, les terres agricoles ex- pliquent la plus grande partie de la variation des nutriments. 11 y a une forte relation negative entre les nutriments dans les rkservoirs et la couverture forestikre. Les relations entre la prairie et les nutriments sont positives, mais faibles, et tout effet statistiquement significatif disparait lorsqu'on tient compte des terres agricoles. Une analyse residuelle in- dique que les reservoirs urbains auraient environ le double des concentrations de nutriments des reservoirs dans les bassins versants sans terres agricoles (donc de forCts et de prairies). L'augmentation des nutriments en fonction de la proportion des terres agricoles et leur diminution en fonction de la couverture forestikre avaient dejh CtC demontrees dans les cours d'eau du Missouri. (Traduit par la Redaction)

[1]  W. T. Edmondson Sixty Years of Lake Washington: a Curriculum Vitae , 1994 .

[2]  John R. Jones,et al.  Stream-watershed relations in the Missouri Ozark Plateau Province , 1985 .

[3]  C. Frink,et al.  Estimating nutrient exports to estuaries , 1991 .

[4]  John R. Jones,et al.  Sources of Variability in Phosphorus and Chlorophyll and Their Effects on Use of Lake Survey Data , 1984 .

[5]  Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences , 1996 .

[6]  A. Sharpley Agriculture and phosphorus management : the Chesapeake Bay , 2000 .

[7]  An examination of land cover and stream water quality among physiographic provinces of Missouri, U.S.A. , 1998 .

[8]  G. Likens Nutrients and eutrophication : the limiting-nutrient controversy : proceedings of the Symposium on Nutrients and Eutrophication: The limiting-nutrient controversy, W. K. Kellogg Biological Station, Michigan State University, 11 and 12 February 1971 , 1972 .

[9]  Vladimir Novotny,et al.  Delivery of sediment and pollutants from nonpoint sources: A water quality perspective , 1989 .

[10]  Carl Richards,et al.  Landscape influences on water chemistry in Midwestern stream ecosystems , 1997 .

[11]  Michael J. Wiley,et al.  Empirical relationships between land use/cover and stream water quality in an agricultural watershed , 1988 .

[12]  Mary T. Bremigan,et al.  Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem , 1997 .

[13]  K. Nicholls,et al.  Trends in Total Phosphorus in Canadian Near–Shore Waters of the Laurentian Great Lakes: 1976–1999 , 2001 .

[14]  R. Carignan,et al.  Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes , 2000 .

[15]  H. Sas,et al.  Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations , 1990 .

[16]  D. Baker,et al.  Phosphorus budgets and riverine phosphorus export in northwestern Ohio watersheds. , 2002, Journal of environmental quality.

[17]  Val H. Smith,et al.  Cultural Eutrophication of Inland, Estuarine, and Coastal Waters , 1998 .

[18]  Jessica J. Meeuwig,et al.  Circumventing phosphorus in lake management : a comparison of chlorophyll a predictions from land-use and phosphorus-loading models , 1996 .

[19]  P. Siver,et al.  Estimating the Effects of Changing Land Use Patterns on Connecticut Lakes , 1996 .

[20]  Angela Lee,et al.  Perspectives on … Environmental Systems Research Institute, Inc , 1997 .

[21]  Michael J. Vanni,et al.  Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use , 2003 .

[22]  Richard A. Vollenweider,et al.  Input-output models , 1975, Schweizerische Zeitschrift für Hydrologie.

[23]  W. T. Edmondson Changes in Lake Washington following an increase in the nutrient income: With 5 figures and 2 tables in the text , 1961 .

[24]  P. Dillon,et al.  Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments , 1997 .

[25]  P. H. Michaletz Factors Affecting Abundance, Growth, and Survival of Age-0 Gizzard Shad , 1997 .

[26]  E. Welch,et al.  Restoration and Management of Lakes and Reservoirs , 2005 .

[27]  Richard C. Lathrop,et al.  Phosphorus Loads to Surface Waters: A Simple Model to Account for Spatial Pattern of Land Use , 1996 .

[28]  C. Watson,et al.  Environmental Impacts of Nitrogen and Phosphorus Cycling in Grassland Systems , 2001 .

[29]  D. Hodell,et al.  Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie , 1995 .

[30]  Gertrud K. Nürnberg,et al.  The prediction of internal phosphorus load in lakes with anoxic hypolimnia1 , 1984 .

[31]  E. Stoermer,et al.  Paleolimnological comparison of the Laurentian Great Lakes based on diatoms , 1993 .

[32]  Dennis P. Swaney,et al.  Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences , 1996 .

[33]  John R. Jones,et al.  Nutrient – sestonic chlorophyll relationships in northern Ozark streams , 1999 .

[34]  D. Canfield,et al.  Prediction of Total Phosphorus Concentrations, Chlorophyll a, and Secchi Depths in Natural and Artificial Lakes , 1981 .

[35]  E. Reavie,et al.  Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions , 2001 .

[36]  G. Matisoff,et al.  The Lake Erie Agricultural Systems for Environmental Quality project: an introduction. , 2002, Journal of environmental quality.

[37]  S. Carpenter,et al.  NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN , 1998 .

[38]  Hj Norussis,et al.  SPSS for Windows , 1993 .

[39]  David A. Kovacic,et al.  Riparian vegetated buffer strips in water‐quality restoration and stream management , 1993 .

[40]  T. C. Daniel,et al.  Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options , 1994 .

[41]  J. Meeuwig Predicting coastal eutrophication from land-use:an empirical approach to small non-stratified estuaries , 1999 .

[42]  E. Prepas,et al.  Landscape variables influencing nutrients and phytoplankton communities in Boreal Plain lakes of northern Alberta: a comparison of wetland- and upland-dominated catchments , 2001 .

[43]  John R. Jones,et al.  Chlorophyll Response to Nutrients and Non-algal Seston in Missouri Reservoirs and Oxbow Lakes , 2005 .

[44]  Kenneth H. Reckhow,et al.  An Examination of Land Use - Nutrient Export Relationships , 1982 .

[45]  John R. Jones,et al.  Limnology Of Missouri Reservoirs: An Analysis of Regional Patterns , 1993 .

[46]  J. Omernik,et al.  Stream nutrient levels and proximity of agricultural and forest land to streams: Some relationships , 1981 .

[47]  M. F. Knowlton,et al.  Temporal and spatial dynamics of suspended sediment, nutrients, and algal biomass in Mark Twain Lake, Missouri , 1995 .

[48]  R. E. Turner,et al.  Changes in Mississippi River Water Quality this CenturyImplications for coastal food webs , 1991 .

[49]  John R. Jones,et al.  Effects of Aggregation on Chlorophyll-Phosphorus Relations in Missouri Reservoirs , 1998 .