Dark matter effective field theory and an application to vector dark matter

[1]  D. Barducci,et al.  Dark photon bounds in the dark EFT , 2021, Journal of High Energy Physics.

[2]  Jan Hajer,et al.  Portal Effective Theories. A framework for the model independent description of light hidden sector interactions , 2021, Journal of High Energy Physics.

[3]  A. Djouadi,et al.  A complete effective field theory for dark matter , 2021, Journal of High Energy Physics.

[4]  J. Wudka,et al.  Effective theories with dark matter applications , 2021, International Journal of Modern Physics D.

[5]  Jacky Kumar,et al.  Anomalous dimensions from Yukawa couplings in SMNEFT: four-fermion operators , 2021, Journal of High Energy Physics.

[6]  Jacky Kumar,et al.  Anomalous dimensions from gauge couplings in SMEFT with right-handed neutrinos , 2020, Journal of High Energy Physics.

[7]  K. Mimasu,et al.  Light and darkness: consistently coupling dark matter to photons via effective operators , 2020, The European Physical Journal C.

[8]  B. Grzadkowski,et al.  Feebly coupled vector boson dark matter in effective theory , 2020, Journal of High Energy Physics.

[9]  D. Borah,et al.  Effective theory of freeze-in dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[10]  D. Redigolo,et al.  Exploring new physics with O(keV) electron recoils in direct detection experiments , 2020, 2006.14521.

[11]  M. Chala,et al.  One-loop running of dimension-six Higgs-neutrino operators and implications of a large neutrino dipole moment , 2020, Journal of High Energy Physics.

[12]  T. Han,et al.  Scalar and tensor neutrino interactions , 2020, Journal of High Energy Physics.

[13]  R. Catena,et al.  Non-relativistic effective interactions of spin 1 Dark Matter , 2019, Journal of High Energy Physics.

[14]  M. Chala,et al.  Probes of the Standard Model effective field theory extended with a right-handed neutrino , 2019, Journal of High Energy Physics.

[15]  W. Rodejohann,et al.  General neutrino interactions from an effective field theory perspective , 2019, Nuclear Physics B.

[16]  J. C. Criado BasisGen: automatic generation of operator bases , 2019, The European Physical Journal C.

[17]  M. Hoferichter,et al.  Nuclear structure factors for general spin-independent WIMP-nucleus scattering , 2018, Physical Review D.

[18]  K. Dienes,et al.  Cosmological constraints on unstable particles: Numerical bounds and analytic approximations , 2018, Physical Review D.

[19]  A. Belyaev,et al.  Interplay of the LHC and non-LHC dark matter searches in the effective field theory approach , 2018, Physical Review D.

[20]  Huayong Han,et al.  Effective field theory of the Majorana dark matter , 2017, Chinese Physics C.

[21]  J. Zupan,et al.  Effective field theory for dark matter direct detection up to dimension seven , 2017, Journal of High Energy Physics.

[22]  T. Moroi,et al.  Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles , 2017, 1709.01211.

[23]  Francesco D’Eramo,et al.  Dark Matter Freeze-in Production in Fast-Expanding Universes , 2017, 1712.07453.

[24]  Peter Stoffer,et al.  Low-energy effective field theory below the electroweak scale: anomalous dimensions , 2017, Journal of High Energy Physics.

[25]  P. Stoffer,et al.  Low-energy effective field theory below the electroweak scale: operators and matching , 2017, Journal of High Energy Physics.

[26]  Y. Liao,et al.  Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos , 2016, 1612.04527.

[27]  T. Slatyer,et al.  General constraints on dark matter decay from the cosmic microwave background , 2016, 1610.06933.

[28]  J. Zupan,et al.  Chiral effective theory of dark matter direct detection , 2016, 1611.00368.

[29]  J. Lesgourgues,et al.  Cosmological constraints on exotic injection of electromagnetic energy , 2016, 1610.10051.

[30]  Lars Husdal On Effective Degrees of Freedom in the Early Universe , 2016, 1609.04979.

[31]  M. Hoferichter,et al.  Analysis strategies for general spin-independent WIMP-nucleus scattering , 2016, 1605.08043.

[32]  Y. S. Tsai,et al.  Effective Theory of WIMP Dark Matter supplemented by Simplified Models: Singlet-like Majorana fermion case , 2016, 1604.02230.

[33]  A. Simone,et al.  Simplified models vs. effective field theory approaches in dark matter searches , 2016, 1603.08002.

[34]  J. Wudka,et al.  Dimension-seven operators in the standard model with right handed neutrinos , 2015, 1505.05264.

[35]  M. Lattanzi,et al.  Bounds on very low reheating scenarios after Planck , 2015, 1511.00672.

[36]  J. Brod,et al.  The coannihilation codex , 2015, 1510.03434.

[37]  M. Hoferichter,et al.  Chiral power counting of one- and two-body currents in direct detection of dark matter , 2015, 1503.04811.

[38]  H. R. Harris,et al.  Dark matter effective field theory scattering in direct detection experiments , 2015, 1503.03379.

[39]  R. Nagai,et al.  Effective theories for dark matter nucleon scattering , 2015, 1502.02244.

[40]  U. Haisch,et al.  LHC constraints on gauge boson couplings to dark matter , 2015, 1501.00907.

[41]  T. Slatyer,et al.  Heavy dark matter annihilation from effective field theory. , 2014, Physical review letters.

[42]  R. Hill,et al.  Standard model anatomy of WIMP dark matter direct detection. I. Weak-scale matching , 2014, 1401.3339.

[43]  B. Grzadkowski,et al.  Classification of effective operators for interactions between the Standard Model and dark matter , 2014, 1412.0520.

[44]  C. Kolda,et al.  UltraViolet freeze-in , 2014, 1410.6157.

[45]  U. Haisch,et al.  Dark matter direct detection constraints from gauge bosons loops , 2014, 1408.5046.

[46]  Y. Farzan,et al.  Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters , 2014, 1408.2950.

[47]  Y. S. Tsai,et al.  Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory , 2014, 1407.1859.

[48]  R. Catena,et al.  Global fits of the dark matter-nucleon effective interactions , 2014, 1405.2637.

[49]  E. Kolb,et al.  The fermionic dark matter Higgs portal: an effective field theory approach , 2014, 1404.2283.

[50]  M. Procura,et al.  New constraints on dark matter effective theories from standard model loops. , 2014, Physical review letters.

[51]  N. Bell,et al.  Co-annihilating Dark Matter: Effective Operator Analysis and Collider Phenomenology , 2013, 1311.6169.

[52]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[53]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[54]  E. Jenkins,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[55]  M. Papucci,et al.  Constraining light dark matter with low-energy e+e− colliders , 2013, 1309.5084.

[56]  M. Buckley Using effective operators to understand CoGeNT and CDMS-Si signals , 2013, 1308.4146.

[57]  P. Panci,et al.  Tools for model-independent bounds in direct dark matter searches , 2013, 1307.5955.

[58]  M. Cliche,et al.  Effective theory of self-interacting dark matter , 2013, 1307.1129.

[59]  A. Manohar An exactly solvable model for dimension-six Higgs operators and h→γγ , 2013, 1305.3927.

[60]  A. Simone,et al.  On the effective operators for Dark Matter annihilations , 2013, 1301.1486.

[61]  Y. Farzan,et al.  Natural explanation for 130 GeV photon line within vector boson dark matter model , 2012, 1211.4685.

[62]  Wick Haxton,et al.  The Effective Field Theory of Dark Matter Direct Detection , 2012, 1203.3542.

[63]  Kingman Cheung,et al.  Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection, and collider , 2012, 1201.3402.

[64]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[65]  F. Sannino,et al.  Dark Matter Effective Theory , 2011, 1102.3116.

[66]  T. Tait,et al.  Gamma ray line constraints on effective theories of dark matter , 2010, 1009.0008.

[67]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[68]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[69]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[70]  JiJi Fan,et al.  Non-relativistic effective theory of dark matter direct detection , 2010, 1008.1591.

[71]  J. Zupan,et al.  Global interpretation of direct Dark Matter searches after CDMS-II results , 2009, 0912.4264.

[72]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[73]  J. Wudka,et al.  Right-handed neutrino magnetic moments , 2009, Journal of Physics G: Nuclear and Particle Physics.

[74]  G. Kribs,et al.  Effective theory of Dirac dark matter , 2008, 0810.5557.

[75]  J. Wudka,et al.  Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders , 2008, 0806.0876.

[76]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[77]  B. Fields,et al.  Updated Nucleosynthesis Constraints on Unstable Relic Particles , 2002, astro-ph/0211258.

[78]  Hu,et al.  Thermalization constraints and spectral distortions for massive unstable relic particles. , 1993, Physical review letters.

[79]  J. L. Lopez,et al.  Astrophysical constraints on massive unstable neutral relic particles , 1992 .